
REVISED
THIRD

EDITION

Jeff Carpenter &
Eben Hewitt

Revised

Third EditionCassandra
 The Definitive GuideThe Definitive Guide
Distributed Data
at Web Scale

Compliments of

REVISED
THIRD

EDITION

DATA

“This book will teach
you why and how to
apply Cassandra in
your application. Build
something amazing
and be yet another
success story.”

—Patrick McFadin
VP Developer Relations at DataStax

Cassandra: The Definitive Guide

ISBN: 978-1-492-09714-3

US $69.99 CAN $92.99

Imagine what you could do if scalability wasn’t a problem. With
this hands-on guide, you’ll learn how the Cassandra database
management system handles hundreds of terabytes of data
while remaining highly available across multiple data centers.
This revised third edition—updated for Cassandra 4.0 and
new developments in the Cassandra ecosystem, including
deployments in Kubernetes with K8ssandra—provides technical
details and practical examples to help you put this database to
work in a production environment.

Authors Jeff Carpenter and Eben Hewitt demonstrate the
advantages of Cassandra’s nonrelational design, with special
attention to data modeling. Developers, DBAs, and application
architects looking to solve a database scaling issue or future-
proof an application will learn how to harness Cassandra’s
speed and flexibility.

• Understand Cassandra’s distributed and decentralized
structure

• Use the Cassandra Query Language (CQL) and cqlsh—the
CQL shell

• Create a working data model and compare it with an
equivalent relational model

• Design and develop applications using client drivers

• Explore cluster topology and learn how nodes exchange data

• Maintain a high level of performance in your cluster

• Deploy Cassandra onsite, in the cloud, or with Docker and
Kubernetes

• Integrate Cassandra with Spark, Kafka, Elasticsearch, Solr,
and Lucene

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

Jeff Carpenter is a software engineer
and developer advocate at DataStax,
where he leverages his background in
system architecture, microservices, and
Apache Cassandra to help empower
developers and operations engineers
to build distributed systems that are
scalable, reliable, and secure.

Eben Hewitt is the CTO and chief
architect at Sabre Hospitality, where
he’s responsible for the technology
strategy and for designing large-scale,
mission-critical systems and leading
teams to build them. He has served as
CTO at one of the world’s largest hotel
companies and as CIO of O’Reilly.

Your relational
database isn’t
cutting it.
Discover the most powerful way to scale
with NoSQL and Apache Cassandra®

Read More

Enroll in the DataStax Academy

https://www.datastax.com/nosql
https://www.datastax.com/dev/certifications
https://www.linkedin.com/company/datastax/
https://twitter.com/datastax
https://www.youtube.com/channel/UCAIQY251avaMv7bBv5PCo-A

Jeff Carpenter and Eben Hewitt

Cassandra: The Definitive Guide
Distributed Data at Web Scale

REVISED THIRD EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-09775-4

[LSI]

Cassandra: The Definitive Guide
by Jeff Carpenter and Eben Hewitt

Copyright © 2022 Jeff Carpenter. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Jess Haberman
Development Editor: Sarah Grey
Production Editor: Deborah Baker
Copyeditor: Sonia Saruba
Proofreader: Kim Cofer

Indexer: Potomac Indexing, LLC
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

December 2010: First Edition
July 2016: Second Edition
April 2020: Third Edition
January 2022: Revised Third Edition

Revision History for the Revised Third Edition
2022-01-21: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492097143 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Cassandra: The Definitive Guide, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and DataStax. See our statement of editorial inde‐
pendence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492097143
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

This book is dedicated to my sweetheart, Alison Brown. I can hear the sound of violins,
long before it begins.

—E.H.

For Stephanie, my inspiration, unfailing support, and the love of my life.

—J.C.

Table of Contents

Foreword. xv

Preface. xvii

1. Beyond Relational Databases. 1
What’s Wrong with Relational Databases? 1
A Quick Review of Relational Databases 5

Transactions, ACID-ity, and Two-Phase Commit 6
Schema 9
Sharding and Shared-Nothing Architecture 10

Web Scale 12
The Rise of NoSQL 13
Summary 16

2. Introducing Cassandra. 17
The Cassandra Elevator Pitch 17

Cassandra in 50 Words or Less 17
Distributed and Decentralized 18
Elastic Scalability 19
High Availability and Fault Tolerance 19
Tuneable Consistency 20
Brewer’s CAP Theorem 23
Row-Oriented 27
High Performance 28

Where Did Cassandra Come From? 28
Is Cassandra a Good Fit for My Project? 30

Large Deployments 30
Lots of Writes, Statistics, and Analysis 30

vii

Geographical Distribution 31
Hybrid Cloud and Multicloud Deployment 31

Getting Involved 31
Summary 34

3. Installing Cassandra. 35
Installing the Apache Distribution 35

Extracting the Download 36
What’s in There? 36

Building from Source 38
Additional Build Targets 39

Running Cassandra 39
Setting the Environment 40
Starting the Server 41
Stopping Cassandra 43

Other Cassandra Distributions 44
Running the CQL Shell 45
Basic cqlsh Commands 46

cqlsh Help 46
Describing the Environment in cqlsh 47
Creating a Keyspace and Table in cqlsh 48
Writing and Reading Data in cqlsh 51

Running Cassandra in Docker 53
Summary 54

4. The Cassandra Query Language. 55
The Relational Data Model 55
Cassandra’s Data Model 56

Clusters 59
Keyspaces 59
Tables 59
Columns 63

CQL Types 66
Numeric Data Types 67
Textual Data Types 67
Time and Identity Data Types 68
Other Simple Data Types 70
Collections 72
Tuples 75
User-Defined Types 76

Summary 79

viii | Table of Contents

5. Data Modeling. 81
Conceptual Data Modeling 81
RDBMS Design 82

Design Differences Between RDBMS and Cassandra 83
Defining Application Queries 86
Logical Data Modeling 87

Hotel Logical Data Model 89
Reservation Logical Data Model 91

Physical Data Modeling 93
Hotel Physical Data Model 94
Reservation Physical Data Model 96

Evaluating and Refining 97
Calculating Partition Size 97
Calculating Size on Disk 98
Breaking Up Large Partitions 100

Defining Database Schema 101
Cassandra Data Modeling Tools 103

Summary 106

6. The Cassandra Architecture. 107
Data Centers and Racks 107
Gossip and Failure Detection 108
Snitches 110
Rings and Tokens 111
Virtual Nodes 113
Partitioners 113
Replication Strategies 114
Consistency Levels 115
Queries and Coordinator Nodes 117
Hinted Handoff 118
Anti-Entropy, Repair, and Merkle Trees 119
Lightweight Transactions and Paxos 120
Memtables, SSTables, and Commit Logs 122
Bloom Filters 124
Caching 125
Compaction 125
Deletion and Tombstones 127
Managers and Services 128

Cassandra Daemon 128
Storage Engine 129
Storage Service 129
Storage Proxy 130

Table of Contents | ix

Messaging Service 130
Stream Manager 130
CQL Native Transport Server 131

System Keyspaces 131
Summary 134

7. Designing Applications with Cassandra. 135
Hotel Application Design 135

Cassandra and Microservice Architecture 135
Microservice Architecture for a Hotel Application 137
Identifying Bounded Contexts 138
Identifying Services 138
Designing Microservice Persistence 140

Extending Designs 143
Secondary Indexes 144
Materialized Views 148

Reservation Service: A Sample Microservice 152
Design Choices for a Java Microservice 152

Deployment and Integration Considerations 153
Services, Keyspaces, and Clusters 153
Data Centers and Load Balancing 154
Interactions Between Microservices 154

Summary 156

8. Application Development with Drivers. 157
DataStax Java Driver 158

Development Environment Configuration 158
Connecting to a Cluster 159
Statements 161
Simple Statements 162
Prepared Statements 163
Query Builder 165
Object Mapper 167
Asynchronous Execution 170
Driver Configuration 172
Metadata 178
Debugging and Monitoring 180

DataStax Python Driver 181
DataStax Node.js Driver 182
DataStax C# Driver 183
Other Cassandra Drivers 183
Summary 185

x | Table of Contents

9. Writing and Reading Data. 187
Writing 187

Write Consistency Levels 187
The Cassandra Write Path 189
Writing Files to Disk 191
Lightweight Transactions 193
Batches 196

Reading 199
Read Consistency Levels 199
The Cassandra Read Path 201
Read Repair 203
Range Queries, Ordering and Filtering 205
Paging 208

Deleting 210
Summary 212

10. Configuring and Deploying Cassandra. 213
Cassandra Cluster Manager 213

Creating a Cluster 214
Adding Nodes to a Cluster 217
Dynamic Ring Participation 218

Node Configuration 219
Seed Nodes 219
Snitches 220
Partitioners 222
Tokens and Virtual Nodes 224
Network Interfaces 225
Data Storage 226
Startup and JVM Settings 227

Planning a Cluster Deployment 229
Cluster Topology and Replication Strategies 229
Sizing Your Cluster 232
Selecting Instances 234
Storage 234
Network 235

Cloud Deployment 236
Amazon Web Services 236
Google Cloud Platform 239
Microsoft Azure 240

Summary 241

Table of Contents | xi

11. Monitoring. 243
Monitoring Cassandra with JMX 243
Cassandra’s MBeans 246

Database MBeans 247
Cluster-Related MBeans 250
Internal MBeans 252

Monitoring with nodetool 253
Getting Cluster Information 254
Getting Statistics 257

Virtual Tables 259
System Virtual Schema 260
System Views 261

Metrics 263
Logging 266

Examining Log Files 268
Full Query Logging 270

Summary 271

12. Maintenance. 273
Health Check 273
Common Maintenance Tasks 274

Flush 274
Cleanup 275
Repair 276
Rebuilding Indexes 281
Moving Tokens 281

Adding Nodes 282
Adding Nodes to an Existing Data Center 282
Adding a Data Center to a Cluster 283

Handling Node Failure 284
Repairing Failed Nodes 285
Replacing Nodes 286
Removing Nodes 287

Upgrading Cassandra 290
Backup and Recovery 292

Taking a Snapshot 293
Clearing a Snapshot 294
Enabling Incremental Backup 294
Restoring from Snapshot 295

SSTable Utilities 296
Maintenance Tools 297

Netflix Priam 297

xii | Table of Contents

DataStax OpsCenter 298
Cassandra Sidecars 298
Cassandra Kubernetes Operators 299

Summary 303

13. Performance Tuning. 305
Managing Performance 305

Setting Performance Goals 305
Benchmarking and Stress Testing 307
Monitoring Performance 312
Analyzing Performance Issues 313
Tracing 314
Tuning Methodology 316

Caching 317
Key Cache 317
Row Cache 318
Chunk Cache 319
Counter Cache 319
Saved Cache Settings 320

Memtables 320
Commit Logs 321
SSTables 323
Hinted Handoff 324
Compaction 325
Concurrency and Threading 328
Networking and Timeouts 329
JVM Settings 331

Memory 332
Garbage Collection 332

Summary 336

14. Security. 337
Authentication and Authorization 339

Password Authenticator 339
Using CassandraAuthorizer 342
Role-Based Access Control 344

Encryption 346
SSL, TLS, and Certificates 347
Node-to-Node Encryption 350
Client-to-Node Encryption 352

JMX Security 353
Securing JMX Access 353

Table of Contents | xiii

Security MBeans 355
Audit Logging 356
Summary 359

15. Migrating and Integrating. 361
Knowing When to Migrate 361
Adapting the Data Model 362

Translating Entities 363
Translating Relationships 365

Adapting the Application 367
Refactoring Data Access 368
Maintaining Consistency 368
Migrating Stored Procedures 370

Planning the Deployment 375
Migrating Data 376

Zero-Downtime Migration 376
Bulk Loading 377

Common Integrations 379
Managing Data Flow with Apache Kafka 379
Searching with Apache Lucene, SOLR, and Elasticsearch 382
Analyzing Data with Apache Spark 382

Summary 389

Index. 391

xiv | Table of Contents

Foreword

I first came across Apache Cassandra at the start of 2009. As a beta tester for push
alerts on the iPhone, our mobile news application was having a difficult time han‐
dling millions of user lookups to send timely updates. After evaluating several differ‐
ent approaches, I stumbled onto Cassandra. Here was a database where I had to
model my data for the query I was going to make, optimizing the “fetch” to return the
whole result set in a single disk seek. What had been taking up to 30 minutes, impact‐
ing latencies across the site, sped up to a matter of seconds—so fast that our develop‐
ment contacts at Apple had to ask us to lower our throughput!

Almost every aspect of Cassandra has changed substantially since then. What was ini‐
tially a niche group of power users and distributed systems enthusiasts has blossomed
into a thriving, diverse community. Over the years, Cassandra has proved itself time
and again, running some of the largest workloads on the internet for services you use
every day. An equally valid maturity signal is that you now have in front of you a
third edition of this book.

Through all its successes, Cassandra is still a difficult system to use. From installation
to integration and operationalization, it remains nuanced, with plenty of gotchas.
This book does a fantastic job of walking the reader through common pitfalls, with
detailed explanations of important concepts.

No matter what your focus, read all the way through this book, so you understand the
Cassandra system as a whole. As a developer, you may never need to care about anti-
entropy repair (that’s the ops team’s job!), but you still need to understand its impact
on maintaining data consistency. This may be the first time you have used a system
where the operational mechanics affect how you configure your application for data
consistency. You’ll also need to communicate the failure boundaries and cluster top‐
ology to your application team so they can configure data distribution and consis‐
tency levels correctly.

Regardless of your role, these concepts are difficult. This book, more than any single
resource I’ve come across to date, does an excellent job of explaining things. We all

xv

learn differently, though, and I encourage you to supplement what this volume offers
by engaging with Apache Cassandra’s thriving community, full of experienced power
users, developers, and application architects who contribute code and documenta‐
tion, participate in discussion lists and Slack channels, and speak at meetups and
events. Use this book as your gateway into the world of Apache Cassandra.

— Nate McCall
Vice President, Apache Cassandra

Apache Software Foundation
Raumati South, New Zealand

March 25, 2020

xvi | Foreword

Preface

Why Apache Cassandra?
Apache Cassandra is a free, open source, distributed data storage system that differs
sharply from relational database management systems (RDBMSs).

Cassandra first started as an Incubator project at Apache in January of 2009. Shortly
thereafter, the committers, led by Apache Cassandra Project Chair Jonathan Ellis,
released version 0.3 of Cassandra, and steadily made releases up to the milestone 3.0
release. Since 2017, the project has been led by Apache Cassandra Project Chair Nate
McCall, producing releases 3.1 through the latest 4.0 release. Cassandra is being used
in production by some of the biggest companies on the web, including Facebook,
Twitter, and Netflix.

Its popularity is due in large part to the outstanding technical features it provides. It is
durable, seamlessly scalable, and tuneably consistent. It performs blazingly fast writes,
can store hundreds of terabytes of data, and is decentralized and symmetrical so
there’s no single point of failure. It is highly available and offers a data model based on
the Cassandra Query Language (CQL).

Is This Book for You?
This book is intended for a variety of audiences. It should be useful to you if you are:

• A developer working with large-scale, high-volume applications, such as Web 2.0
social applications, ecommerce sites, financial services, or sensor-based Internet
of Things (IoT) systems

• An application architect or data architect who needs to understand the available
options for high-performance, decentralized, elastic data stores

xvii

• A database administrator or database developer currently working with standard
relational database systems who needs to understand how to implement a fault-
tolerant, eventually consistent data store

• A manager who wants to understand the advantages (and disadvantages) of Cas‐
sandra to help make decisions about technology strategy

• A student, analyst, or researcher who is designing a project related to Cassandra
or other nonrelational data store options

This book is a technical guide. In many ways, Cassandra and other NoSQL databases
represent a new way of thinking about data. Many developers who gained their pro‐
fessional chops in the last 15–20 years have become well versed in thinking about
data in purely relational or object-oriented terms. Cassandra’s data model is different
and can be difficult to wrap your mind around at first, especially for those of us with
entrenched ideas about what a database is (and should be).

Using Cassandra does not mean that you have to be a Java developer. However, Cas‐
sandra is written in Java, so if you’re going to dive into the source code, a solid under‐
standing of Java is crucial. Many of the examples in this book are in Java, but
Cassandra drivers are available in a wide variety of languages, including Java, Node.js,
Python, C#, PHP, Ruby, and Go.

Finally, it is assumed that you have a good understanding of how the web works, can
use an integrated development environment (IDE), and are somewhat familiar with
the typical concerns of data-driven applications. You might be a well-seasoned devel‐
oper or administrator but still, on occasion, encounter tools used in the Cassandra
world that you’re not familiar with. For example, Apache Ant is used to build Cassan‐
dra, and the Cassandra source code is available via Git. In cases where we speculate
that you’ll need to do a little setup of your own in order to work with the examples,
we try to support that.

What’s in This Book?
This book is designed with the chapters acting, to a reasonable extent, as standalone
guides. This is important for a book on Cassandra, which has a variety of audiences
in different job roles and industries. To borrow from the software world, the book is
designed to be modular. If you’re new to Cassandra, it makes sense to read the book
in order; if you’ve passed the introductory stages, you will still find value in later
chapters, which you can read as standalone guides.

Here is how the book is organized:

Chapter 1, “Beyond Relational Databases”
This chapter reviews the history of the enormously successful relational database
and the rise of nonrelational database technologies like Cassandra.

xviii | Preface

Chapter 2, “Introducing Cassandra”
This chapter introduces Cassandra and discusses what’s exciting and different
about it, where it came from, and what its advantages are.

Chapter 3, “Installing Cassandra”
This chapter walks you through installing Cassandra, getting it running, and try‐
ing out some of its basic features.

Chapter 4, “The Cassandra Query Language”
Here we look at Cassandra’s data model, highlighting how it differs from the tra‐
ditional relational model. We also explore how this data model is expressed in the
Cassandra Query Language (CQL).

Chapter 5, “Data Modeling”
This chapter introduces principles and processes for data modeling in Cassandra.
We analyze a well-understood domain to produce a working schema.

Chapter 6, “The Cassandra Architecture”
This chapter helps you understand what happens during read and write opera‐
tions and how the database accomplishes some of its notable aspects, such as
durability and high availability. We go under the hood to understand some of the
more complex inner workings, such as the gossip protocol, hinted handoffs, read
repairs, Merkle trees, and more.

Chapter 7, “Designing Applications with Cassandra”
In order to help make some of Cassandra’s architecture concepts more concrete,
we’ll explore some of the common ways in which Cassandra figures into the
architecture and design of modern cloud applications.

Chapter 8, “Application Development with Drivers”
There are a variety of drivers available for different languages, including Java,
Node.js, Python, Ruby, C#, and PHP, in order to abstract Cassandra’s lower-level
API. We help you understand how to use common driver features to develop
applications with Cassandra.

Chapter 9, “Writing and Reading Data”
We build on the previous chapters to learn how Cassandra works “under the cov‐
ers” to read and write data. We’ll also discuss concepts such as batches, light‐
weight transactions, and paging.

Chapter 10, “Configuring and Deploying Cassandra”
This chapter shows you how to specify partitioners, replica placement strategies,
and snitches. We set up a cluster and see the implications of different configura‐
tion choices. We’ll discuss how to plan your cluster deployments, including
hybrid and multicloud deployments using providers such as Amazon, Microsoft,

Preface | xix

and Google, as well as deploying and managing clusters using Docker and
Kubernetes.

Chapter 11, “Monitoring”
Once your cluster is up and running, you’ll want to monitor its usage, memory
patterns, and thread patterns, and understand its general activity. Cassandra has
a rich Java Management Extensions (JMX) interface baked in, which we put to
use to monitor all of these and more.

Chapter 12, “Maintenance”
The ongoing maintenance of a Cassandra cluster is made somewhat easier by
some tools that ship with the server. We see how to decommission a node, load
balance the cluster, get statistics, and perform other routine operational tasks.

Chapter 13, “Performance Tuning”
One of Cassandra’s most notable features is its speed—it’s very fast. But there are
a number of things, including memory settings, data storage, hardware choices,
caching, and buffer sizes, that you can tune to squeeze out even more
performance.

Chapter 14, “Security”
NoSQL technologies are often slighted as being weak on security. Thankfully,
Cassandra provides authentication, authorization, and encryption features,
which we’ll learn how to configure in this chapter.

Chapter 15, “Migrating and Integrating”
We close the book with a summary of the steps involved in bringing Cassandra
into your enterprise, from the perspective of migrating from a relational database
to Cassandra. We’ll look at the implications for data modeling, application devel‐
opment, and deployment as well as how Cassandra integrates with other popular
technologies, including:

• Streaming systems such as Apache Kafka
• Search engines such as Apache Lucene, Apache Solr, and ElasticSearch
• Analytics platforms such as Apache Spark

Cassandra Versions Used in This Book

This book was developed using Apache Cassandra 4.0 and the
DataStax Java Driver version 4.1. The formatting and content of
tool output, log files, configuration files, and error messages are as
they appear in the 4.0 release, and may change in future releases.
When discussing features added in releases 2.0 and later, we cite
the release in which the feature was added for readers who may be
using earlier versions and are considering whether to upgrade.

xx | Preface

New for the Third Edition
For this third edition, there is not quite as much of a time gap to cover as there was
between the first and second editions, but there have been several key changes we’d
like to note:

A grown-up database
The conventional wisdom in the software engineering community has been that
it takes 5–10 years for a new database engine to fully mature. Thankfully, Cassan‐
dra has reached this maturity milestone, and while the 4.0 release certainly has
some stability and availability improvements, the bulk of the new features are
focused on features that make the database easier to understand and maintain.
This edition covers new 4.0 features including: virtual tables (covered in Chap‐
ter 11), audit logging (covered in Chapter 14), and change data capture (CDC)
(covered in Chapter 15).

Cassandra in cloud applications
The types of applications in which Cassandra is used continue to increase. To
help bridge the gap between concept and reality, we’ve added a new chapter on
this, Chapter 7. We’ve also updated Chapter 15 to include discussion of several
patterns for using Kafka and Cassandra together.

Changes in cloud deployment
When the second edition was published, Docker had already become a popular
choice for application deployment, but the verdict was still out on running data‐
bases on Docker. Since then, there have been sufficient advances that we now feel
comfortable recommending deployment of Cassandra on Docker. Kubernetes
has emerged as the key technology for orchestrating the deployment and mainte‐
nance of containers across clusters of machines. In this edition we’ve updated
Chapter 10 with new guidance on deployment of Cassandra to Docker and added
coverage of Kubernetes to reflect the changing landscape.

Note on the Revised Third Edition
This revised third edition contains several updates to help bring the Cassandra story
up to date as of 2022:

• The Cassandra community has continued to innovate since the 4.0 release. This
edition highlights efforts under the Apache project umbrella, as reflected in the
Cassandra Enhancement Proposal (CEP) process. We also highlight companion
ventures, including K8ssandra, a project for deploying Cassandra in Kubernetes.

Preface | xxi

https://k8ssandra.io

• The experience of developing applications with Cassandra continues to improve.
We’ve extended our coverage of development with Cassandra in Chapter 8,
including API access with Stargate and driver examples in additional popular
languages.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
The code examples found in this book are available for download at https://
github.com/jeffreyscarpenter/cassandra-guide and https://github.com/jeffreyscarpenter/
reservation-service.

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for

xxii | Preface

https://stargate.io
https://github.com/jeffreyscarpenter/cassandra-guide
https://github.com/jeffreyscarpenter/cassandra-guide
https://github.com/jeffreyscarpenter/reservation-service
https://github.com/jeffreyscarpenter/reservation-service

permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing examples from O’Reilly books does require per‐
mission. Answering a question by citing this book and quoting example code does
not require permission. Incorporating a significant amount of example code from
this book into your product’s documentation does require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Cassandra: The Defini‐
tive Guide, Revised Edition, by Jeff Carpenter and Eben Hewitt (O’Reilly). Copyright
2022 Jeff Carpenter, 978-1-492-09714-3.”

If you feel your use of code examples falls outside fair use or the permission given
here, feel free to contact us at permissions@oreilly.com.

O’Reilly Interactive Katacoda Scenarios
Interactive Katacoda scenarios mimic real-world production environments and let
you write and run code as you learn, right in your browser. The author has developed
a collection of Katacoda scenarios to give you hands-on practice with the tools and
practices outlined in this book. Visit http://oreilly.com for more information about
our interactive content, to view the ebook format for this title, and also to learn about
all our learning platform has to offer.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, please visit http://
oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North

Preface | xxiii

mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com
http://oreilly.com
http://oreilly.com

Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/cassandra_revisedEd.

Send an email to bookquestions@oreilly.com to comment or ask technical questions
about this book.

For more information about our books, courses, and news, see our website at http://
www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
There are many wonderful people to whom we are grateful for helping bring this
book to life.

Thank you to our technical reviewers: Stu Hood, Robert Schneider, and Gary Dusba‐
bek contributed thoughtful reviews to the first edition, while Andrew Baker, Ewan
Elliot, Kirk Damron, Corey Cole, Jeff Jirsa, Chris Judson, and Patrick McFadin
reviewed the second edition. The third edition was reviewed by Pankaj Gallar,
Cedrick Lunven, Alex Ott, and Wei Deng.

Thank you to Jonathan Ellis and Patrick McFadin for writing forewords for the first
and second editions, respectively, and to Nate McCall for the third edition foreword.
Thanks also to Patrick for his contributions to the Spark integration section in Chap‐
ter 15.

Thanks to our editors, Mike Loukides, Marie Beaugureau, Nicole Taché, Jess Haber‐
man, and Sarah Grey, for their constant support and making this a better book.

Jeff would like to thank Eben for entrusting him with the opportunity to update such
a well-regarded, foundational text, and for Eben’s encouragement from start to finish.

Finally, we’ve been inspired by the many terrific developers who have contributed to
Cassandra. Hats off for making such an elegant and powerful database.

xxiv | Preface

https://oreil.ly/cassandra_revisedEd
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Beyond Relational Databases

If at first the idea is not absurd, then there is no hope for it.
—Albert Einstein

Welcome to Cassandra: The Definitive Guide. The aim of this book is to help develop‐
ers and database administrators understand this important database technology. Dur‐
ing the course of this book, we will explore how Cassandra compares to traditional
relational database management systems, and help you put it to work in your own
environment.

What’s Wrong with Relational Databases?
If I had asked people what they wanted, they would have said faster horses.

—Henry Ford

We ask you to consider a certain model for data, invented by a small team at a com‐
pany with thousands of employees. It was accessible over a TCP/IP interface and was
available from a variety of languages, including Java and web services. This model
was difficult at first for all but the most advanced computer scientists to understand,
until broader adoption helped make the concepts clearer. Using the database built
around this model required learning new terms and thinking about data storage in a
different way. But as products sprang up around it, more businesses and government
agencies put it to use, in no small part because it was fast—capable of processing
thousands of operations a second. The revenue it generated was tremendous.

And then a new model came along.

The new model was threatening, chiefly for two reasons. First, the new model was
very different from the old model, which it pointedly controverted. It was threatening
because it can be hard to understand something different and new. Ensuing debates

1

can help entrench people stubbornly further in their views—views that might have
been largely inherited from the climate in which they learned their craft and the cir‐
cumstances in which they work. Second, and perhaps more importantly, as a barrier,
the new model was threatening because businesses had made considerable invest‐
ments in the old model and were making lots of money with it. Changing course
seemed ridiculous, even impossible.

Of course, we are talking about the Information Management System (IMS) hierarch‐
ical database, invented in 1966 at IBM.

IMS was built for use in the Saturn V moon rocket. Its architect was Vern Watts, who
dedicated his career to it. Many of us are familiar with IBM’s database DB2. IBM’s
wildly popular DB2 database gets its name as the successor to DB1—the product built
around the hierarchical data model IMS. IMS was released in 1968, and subsequently
enjoyed success in Customer Information Control System (CICS) and other applica‐
tions. It is still used today.

But in the years following the invention of IMS, the new model, the disruptive model,
the threatening model, was the relational database.

In his 1970 paper, “A Relational Model of Data for Large Shared Data Banks”, Dr.
Edgar F. Codd also advanced his theory of the relational model for data while work‐
ing at IBM’s San Jose research laboratory. This paper became the foundational work
for relational database management systems.

Codd’s work was antithetical to the hierarchical structure of IMS. Understanding and
working with a relational database required learning new terms, including relations,
tuples, and normal form, all of which must have sounded very strange indeed to users
of IMS. It presented certain key advantages over its predecessor, such as the ability to
express complex relationships between multiple entities, well beyond what could be
represented by hierarchical databases.

While these ideas and their application have evolved in four decades, the relational
database still is clearly one of the most successful software applications in history. It’s
used in the form of Microsoft Access in sole proprietorships, and in giant multina‐
tional corporations with clusters of hundreds of finely tuned instances representing
multiterabyte data warehouses. Relational databases store invoices, customer records,
product catalogs, accounting ledgers, user authentication schemes—the very world, it
might appear. There is no question that the relational database is a key facet of the
modern technology and business landscape, and one that will be with us in its various
forms for many years to come, as will IMS in its various forms. The relational model
presented an alternative to IMS, and each has its uses.

So the short answer to the question, “What’s Wrong with Relational Databases?” is
“Nothing.”

2 | Chapter 1: Beyond Relational Databases

https://oreil.ly/IM50v

There is, however, a rather longer answer, which says that every once in a while an
idea is born that ostensibly changes things, and engenders a revolution of sorts. And
yet, in another way, such revolutions, viewed structurally, are simply history’s busi‐
ness as usual. IMS, RDBMS, NoSQL. The horse, the car, the plane. They each build
on prior art, they each attempt to solve certain problems, and so they’re each good at
certain things—and less good at others. They coexist, even now.

So let’s examine for a moment why you might consider an alternative to the relational
database, just as Codd himself four decades ago looked at the Information Manage‐
ment System and thought that maybe it wasn’t the only legitimate way of organizing
information and solving data problems, and that maybe, for certain problems, it
might prove fruitful to consider an alternative.

You encounter scalability problems when your relational applications become suc‐
cessful and usage goes up. The need to gather related data from multiple tables via
joins is inherent in any relatively normalized relational database of even modest size,
and joins can be slow. The way that databases gain consistency is typically through
the use of transactions, which require locking some portion of the database so it’s not
available to other clients. This can become untenable under very heavy loads, as the
locks mean that competing users start queuing up, waiting for their turn to read or
write the data.

You typically address these problems in one or more of the following ways, some‐
times in this order:

• Throw hardware at the problem by adding more memory, adding faster process‐
ors, and upgrading disks. This is known as vertical scaling. This can relieve you
for a time.

• When the problems arise again, the answer appears to be similar: now that one
box is maxed out, you add hardware in the form of additional boxes in a database
cluster. Now you have the problem of data replication and consistency during
regular usage and in failover scenarios. You didn’t have that problem before.

• Now you need to update the configuration of the database management system.
This might mean optimizing the channels the database uses to write to the
underlying filesystem. You turn off logging or journaling, which frequently is not
a desirable (or, depending on your situation, legal) option.

• Having put what attention you could into the database system, you turn to your
application. You try to improve your indexes. You optimize the queries. But pre‐
sumably at this scale you weren’t wholly ignorant of index and query optimiza‐
tion, and already had them in pretty good shape. So this becomes a painful
process of picking through the data access code to find any opportunities for
fine-tuning. This might include reducing or reorganizing joins, throwing out
resource-intensive features such as XML processing within a stored procedure,

What’s Wrong with Relational Databases? | 3

and so forth. Of course, presumably you were doing that XML processing for a
reason, so if you have to do it somewhere, you move that problem to the applica‐
tion layer, hoping to solve it there and crossing your fingers that you don’t break
something else in the meantime.

• You employ a caching layer. For larger systems, this might include distributed
caches such as Redis, memcached, Hazelcast, Aerospike, Ehcache, or Riak. Now
you have a consistency problem between updates in the cache and updates in the
database, which is exacerbated over a cluster.

• You turn your attention to the database again and decide that, now that the appli‐
cation is built and you understand the primary query paths, you can duplicate
some of the data to make it look more like the queries that access it. This process,
called denormalization, is antithetical to the five normal forms that characterize
the relational model, and violates Codd’s 12 Rules for relational data. You remind
yourself that you live in this world, and not in some theoretical cloud, and then
undertake to do what you must to make the application start responding at
acceptable levels again, even if it’s no longer “pure.”

Codd’s 12 Rules

Codd provided a list of 12 rules (there are actually 13, numbered 0
to 12) formalizing his definition of the relational model as a
response to the divergence of commercial databases from his origi‐
nal concepts. Codd introduced his rules in a pair of articles in
CompuWorld magazine in October 1985, and formalized them in
the second edition of his book The Relational Model for Database
Management, which is now out of print. Although Codd’s rules rep‐
resent an ideal system which commercial databases have typically
implemented only partially, they have continued to exert a key
influence over relational data modeling to the present day.

This likely sounds familiar to you. At web scale, engineers may legitimately ponder
whether this situation isn’t similar to Henry Ford’s assertion that at a certain point, it’s
not simply a faster horse that you want. And they’ve done some impressive, interest‐
ing work.

We must therefore begin here in recognition that the relational model is simply a
model. That is, it’s intended to be a useful way of looking at the world, applicable to
certain problems. It does not purport to be exhaustive, closing the case on all other
ways of representing data, never again to be examined, leaving no room for alterna‐
tives. If you take the long view of history, Dr. Codd’s model was a rather disruptive
one in its time. It was new, with strange new vocabulary and terms such as tuples—
familiar words used in a new and different manner. The relational model was held up

4 | Chapter 1: Beyond Relational Databases

to suspicion, and doubtless suffered its vehement detractors. It encountered opposi‐
tion even in the form of Dr. Codd’s own employer, IBM, which had a very lucrative
product set around IMS and didn’t need a young upstart cutting into its pie.

But the relational model now arguably enjoys the best seat in the house within the
data world. SQL is widely supported and well understood. It is taught in introductory
university courses. Cloud-based Platform-as-a-Service (PaaS) providers such as Ama‐
zon Web Services, Google Cloud Platform, Microsoft Azure, Alibaba, and Rackspace
provide relational database access as a service, including automated monitoring and
maintenance features. Often the database you end up using is dictated by architec‐
tural standards within your organization. Even absent such standards, it’s prudent to
learn whatever your organization already has for a database platform. Your colleagues
in development and infrastructure have considerable hard-won knowledge.

If by nothing more than osmosis (or inertia), you have learned over the years that a
relational database is a one-size-fits-all solution.

So perhaps a better question is not, “What’s Wrong with Relational Databases?” but
rather, “What problem do you have?”

That is, you want to ensure that your solution matches the problem that you have.
There are certain problems that relational databases solve very well. But the explosion
of the web, and in particular social networks, means a corresponding explosion in the
sheer volume of data you must deal with. When Tim Berners-Lee first worked on the
web in the early 1990s, it was for the purpose of exchanging scientific documents
between PhDs at a physics laboratory. Now, of course, the web has become so ubiqui‐
tous that it’s used by everyone, from those same scientists to legions of five-year-olds
exchanging emoji about kittens. That means in part that it must support enormous
volumes of data; the fact that it does stands as a monument to the ingenious architec‐
ture of the web.

But as the traditional relational databases started to bend under the weight, it became
clear that new solutions were needed.

A Quick Review of Relational Databases
Though you are likely familiar with them, let’s briefly turn our attention to some of
the foundational concepts in relational databases. This will give us a basis on which to
consider more recent advances in thought around the trade-offs inherent in dis‐
tributed data systems, especially very large distributed data systems, such as those
that are required at web scale.

There are many reasons that the relational database has become so overwhelmingly
popular over the last four decades. An important one is the Structured Query Lan‐
guage (SQL), which is feature-rich and uses a simple, declarative syntax. SQL was first

A Quick Review of Relational Databases | 5

officially adopted as an American National Standards Institute (ANSI) standard in
1986; since that time, it’s gone through several revisions and has also been extended
with vendor-proprietary syntax such as Microsoft’s T-SQL and Oracle’s PL/SQL to
provide additional implementation-specific features.

SQL is powerful for a variety of reasons. It allows the user to represent complex rela‐
tionships with the data, using statements that form the Data Manipulation Language
(DML) to insert, select, update, delete, truncate, and merge data. You can perform a
rich variety of operations using functions based on relational algebra to find a maxi‐
mum or minimum value in a set, for example, or to filter and order results. SQL state‐
ments support grouping aggregate values and executing summary functions. SQL
provides a means of directly creating, altering, and dropping schema structures at
runtime using Data Definition Language (DDL). SQL also allows you to grant and
revoke rights for users and groups of users using the same syntax.

SQL is easy to use. The basic syntax can be learned quickly, and conceptually SQL
and RDBMSs offer a low barrier to entry. Junior developers can become proficient
readily, and as is often the case in an industry beset by rapid changes, tight deadlines,
and exploding budgets, ease of use can be very important. And it’s not just the syntax
that’s easy to use; there are many robust tools that include intuitive graphical inter‐
faces for viewing and working with your database.

In part because it’s a standard, SQL allows you to easily integrate your RDBMS with a
wide variety of systems. All you need is a driver for your application language, and
you’re off to the races in a very portable way. If you decide to change your application
implementation language (or your RDBMS vendor), you can often do that painlessly,
assuming you haven’t backed yourself into a corner using lots of proprietary
extensions.

Transactions, ACID-ity, and Two-Phase Commit
In addition to the features mentioned already, RDBMSs and SQL also support
transactions. A key feature of transactions is that they execute virtually at first, allow‐
ing the programmer to undo (using rollback) any changes that may have gone awry
during execution; if all has gone well, the transaction can be reliably committed. As
Jim Gray puts it, a transaction is “a transformation of state” that has the ACID prop‐
erties (see “The Transaction Concept: Virtues and Limitations”).

ACID is an acronym for Atomic, Consistent, Isolated, Durable, which are the gauges
you can use to assess that a transaction has executed properly and that it was
successful:

Atomic
Atomic means “all or nothing”; that is, when a statement is executed, every
update within the transaction must succeed in order to be called successful.

6 | Chapter 1: Beyond Relational Databases

https://oreil.ly/AMarh

There is no partial failure where one update was successful and another related
update failed. The common example here is with monetary transfers at an ATM:
the transfer requires a debit from one account and a credit to another account.
This operation cannot be subdivided; they must both succeed.

Consistent
Consistent means that data moves from one correct state to another correct state,
with no possibility that readers could view different values that don’t make sense
together. For example, if a transaction attempts to delete a customer and their
order history, it cannot leave order rows that reference the deleted customer’s
primary key; this is an inconsistent state that would cause errors if someone tried
to read those order records.

Isolated
Isolated means that transactions executing concurrently will not become entan‐
gled with each other; they each execute in their own space. That is, if two differ‐
ent transactions attempt to modify the same data at the same time, then one of
them will have to wait for the other to complete.

Durable
Once a transaction has succeeded, the changes will not be lost. This doesn’t imply
another transaction won’t later modify the same data; it just means that writers
can be confident that the changes are available for the next transaction to work
with as necessary.

The debate about support for transactions comes up very quickly as a sore spot in
conversations around nonrelational data stores, so let’s take a moment to revisit what
this really means. On the surface, ACID properties seem so obviously desirable as to
not even merit conversation. Presumably no one who runs a database would suggest
that data updates don’t have to endure for some length of time; that’s the very point of
making updates—that they’re there for others to read. However, a more subtle exami‐
nation might lead you to want to find a way to tune these properties a bit and control
them slightly. There is, as they say, no free lunch on the internet, and once you see
how you’re paying for transactions, you may start to wonder whether there’s an
alternative.

Transactions become difficult under heavy load. When you first attempt to horizon‐
tally scale a relational database, making it distributed, you must now account for dis‐
tributed transactions, where the transaction isn’t simply operating inside a single table
or a single database, but is spread across multiple systems. In order to continue to
honor the ACID properties of transactions, you now need a transaction manager to
orchestrate across the multiple nodes.

In order to account for successful completion across multiple hosts, the idea of a two-
phase commit (sometimes referred to as “2PC”) is introduced. The two-phase

A Quick Review of Relational Databases | 7

commit is a commonly used algorithm for achieving consensus in distributed sys‐
tems, involving two sets of interactions between hosts known as the prepare phase
and commit phase. Because the two-phase commit locks all associated resources, it is
useful only for operations that can complete very quickly. Although it may often be
the case that your distributed operations can complete in subsecond time, it is cer‐
tainly not always the case. Some use cases require coordination between multiple
hosts that you may not control yourself. Operations coordinating several different but
related activities can take hours to update.

Two-phase commit blocks; that is, clients (“competing consumers”) must wait for a
prior transaction to finish before they can access the blocked resource. The protocol
will wait for a node to respond, even if it has died. It’s possible to avoid waiting for‐
ever in this event, because a timeout can be set that allows the transaction coordinator
node to decide that the node isn’t going to respond and that it should abort the trans‐
action. However, an infinite loop is still possible with 2PC; that’s because a node can
send a message to the transaction coordinator node agreeing that it’s OK for the coor‐
dinator to commit the entire transaction. The node will then wait for the coordinator
to send a commit response (or a rollback response if, say, a different node can’t com‐
mit); if the coordinator is down in this scenario, that node conceivably will wait
forever.

So in order to account for these shortcomings in two-phase commit of distributed
transactions, the database world turned to the idea of compensation. Compensation,
often used in web services, means in simple terms that the operation is immediately
committed, and then in the event that some error is reported, a new operation is
invoked to restore proper state.

There are a few basic, well-known patterns for compensatory action that architects
frequently have to consider as an alternative to two-phase commit. These include
writing off the transaction if it fails, deciding to discard erroneous transactions and
reconciling later. Another alternative is to retry failed operations later on notification.
In a reservation system or a stock sales ticker, these are not likely to meet your
requirements. For other kinds of applications, such as billing or ticketing applica‐
tions, this can be acceptable.

8 | Chapter 1: Beyond Relational Databases

The Problem with Two-Phase Commit

Gregor Hohpe, a Google architect, wrote a wonderful and often-
cited blog entry titled “Starbucks Does Not Use Two-Phase Com‐
mit”. It shows in real-world terms how difficult it is to scale two-
phase commit and highlights some of the alternatives that are
mentioned here. It’s an easy, fun, and enlightening read. If you’re
interested in digging deeper, Martin Kleppman’s comprehensive
book Designing Data-Intensive Applications (O’Reilly) contains an
excellent in-depth discussion of two-phase commit and other con‐
sensus algorithms.

The problems that 2PC introduces for application developers include loss of availabil‐
ity and higher latency during partial failures. Neither of these is desirable. So once
you’ve had the good fortune of being successful enough to necessitate scaling your
database past a single machine, you now have to figure out how to handle transac‐
tions across multiple machines and still make the ACID properties apply. Whether
you have 10 or 100 or 1,000 database machines, atomicity is still required in transac‐
tions as if you were working on a single node. But it’s now a much, much bigger pill
to swallow.

Schema
One often-lauded feature of relational database systems is the rich schemas they
afford. You can represent your domain objects in a relational model. A whole indus‐
try has sprung up around (expensive) tools such as the CA ERwin Data Modeler to
support this effort. In order to create a properly normalized schema, however, you are
forced to create tables that don’t exist as business objects in your domain. For exam‐
ple, a schema for a university database might require a “student” table and a “course”
table. But because of the “many-to-many” relationship here (one student can take
many courses at the same time, and one course has many students at the same time),
you have to create a join table. This pollutes a pristine data model, where you’d prefer
to just have students and courses. It also forces you to create more complex SQL
statements to join these tables together. The join statements, in turn, can be slow.

Again, in a system of modest size, this isn’t much of a problem. But complex queries
and multiple joins can become burdensomely slow once you have a large number of
rows in many tables to handle.

Finally, not all schemas map well to the relational model. One type of system that has
risen in popularity in the last decade is the complex event processing system or stream
processing system, which represents state changes in a very fast stream. It’s often useful
to contextualize events at runtime against other events that might be related in order
to infer some conclusion to support business decision-making. Although event

A Quick Review of Relational Databases | 9

https://oreil.ly/0rnad
https://oreil.ly/0rnad
http://shop.oreilly.com/product/0636920032175.do

streams can be represented in terms of a relational database, as with Apache Kafka’s
KSQL, it is often an uncomfortable stretch.

If you’re an application developer, you’ll no doubt be familiar with the many object-
relational mapping (ORM) frameworks that have sprung up in recent years to help
ease the difficulty in mapping application objects to a relational model. Again, for
small systems, ORM can be a relief. But it also introduces new problems of its own,
such as extended memory requirements, and it often pollutes the application code
with increasingly unwieldy mapping code. Here’s an example of a Java method using
Hibernate to “ease the burden” of having to write the SQL code:

@CollectionOfElements
@JoinTable(name="store_description",
 joinColumns = @JoinColumn(name="store_code"))
@MapKey(columns={@Column(name="for_store",length=3)})
@Column(name="description")
private Map<String, String> getMap() {
 return this.map;
}
//... etc.

Is it certain that we’ve done anything but move the problem here? Of course, with
some systems, such as those that make extensive use of document exchange, as with
services or XML-based applications, there are not always clear mappings to a rela‐
tional database. This exacerbates the problem.

Sharding and Shared-Nothing Architecture
If you can’t split it, you can’t scale it.

—Randy Shoup, Distinguished Architect, eBay

Another way to attempt to scale a relational database is to introduce sharding to your
architecture. This has been used to good effect at large websites such as eBay, which
supports billions of SQL queries a day, and in other modern web applications. The
idea here is that you split the data so that instead of hosting all of it on a single server
or replicating all of the data on all of the servers in a cluster, you divide up portions of
the data horizontally and host them each separately.

For example, consider a large customer table in a relational database. The least dis‐
ruptive thing (for the programming staff, anyway) is to vertically scale by adding
CPU, adding memory, and getting faster hard drives, but if you continue to be suc‐
cessful and add more customers, at some point (perhaps into the tens of millions of
rows), you’ll likely have to start thinking about how you can add more machines.
When you do so, do you just copy the data so that all of the machines have it? Or do
you instead divide up that single customer table so that each database has only some
of the records, with their order preserved? Then, when clients execute queries, they

10 | Chapter 1: Beyond Relational Databases

put load only on the machine that has the record they’re looking for, with no load on
the other machines.

It seems clear that in order to shard, you need to find a good key by which to order
your records. For example, you could divide your customer records across 26
machines, one for each letter of the alphabet, with each hosting only the records for
customers whose last names start with that particular letter. It’s likely this is not a
good strategy, however—there probably aren’t many last names that begin with “Q”
or “Z,” so those machines will sit idle while the “J,” “M,” and “S” machines spike. You
could shard according to something numeric, like phone number, “member since”
date, or the name of the customer’s state. It all depends on how your specific data is
likely to be distributed.

There are three basic strategies for determining shard structure:

Feature-based shard or functional segmentation
This is the approach taken by Randy Shoup, Distinguished Architect at eBay,
who in 2006 helped bring the site’s architecture into maturity to support many
billions of queries per day. Using this strategy, the data is split not by dividing
records in a single table (as in the customer example discussed earlier), but rather
by splitting into separate databases the features that don’t overlap with each other
very much. For example, at eBay, the users are in one shard, and the items for
sale are in another. This approach depends on understanding your domain so
that you can segment data cleanly.

Key-based sharding
In this approach, you find a key in your data that will evenly distribute it across
shards. So instead of simply storing one letter of the alphabet for each server as in
the (naive and improper) earlier example, you use a one-way hash on a key data
element and distribute data across machines according to the hash. It is common
in this strategy to find time-based or numeric keys to hash on.

Lookup table
In this approach, also known as directory-based sharding, one of the nodes in the
cluster acts as a “Yellow Pages” directory and looks up which node has the data
you’re trying to access. This has two obvious disadvantages. The first is that you’ll
take a performance hit every time you have to go through the lookup table as an
additional hop. The second is that the lookup table not only becomes a bottle‐
neck, but a single point of failure.

Sharding can minimize contention depending on your strategy and allows you not
just to scale horizontally, but then to scale more precisely, as you can add power to
the particular shards that need it.

Sharding could be termed a kind of shared-nothing architecture that’s specific to data‐
bases. A shared-nothing architecture is one in which there is no centralized (shared)

A Quick Review of Relational Databases | 11

state, but each node in a distributed system is independent, so there is no client con‐
tention for shared resources.

Shared-nothing architecture was more recently popularized by Google, which has
written systems such as its Bigtable database and its MapReduce implementation that
do not share state, and are therefore capable of near-infinite scaling. The Cassandra
database is a shared-nothing architecture, as it has no central controller and no
notion of primary/secondary replicas; all of its nodes are the same.

More on Shared-Nothing Architecture

The term was first coined by Michael Stonebraker at the University
of California at Berkeley in his 1986 paper “The Case for Shared
Nothing.”. It’s only a few pages. If you take a look, you’ll see that
many of the features of shared-nothing distributed data architec‐
ture, such as ease of high availability and the ability to scale to a
very large number of machines, are the very things that Cassandra
excels at.

Many nonrelational databases offer this automatically and out of the box is very
handy; creating and maintaining custom data shards by hand is a wicked proposition.
For example, MongoDB, which we’ll discuss later, provides auto-sharding capabilities
to manage failover and node balancing. It’s good to understand sharding in terms of
data architecture in general, but especially in terms of Cassandra more specifically.
Cassandra uses an approach similar to key-based sharding to distribute data across
nodes, but does so automatically.

Web Scale
In summary, relational databases are very good at solving certain data storage prob‐
lems, but because of their focus, they also can create problems of their own when it’s
time to scale. Then, you often need to find a way to get rid of your joins, which means
denormalizing the data, which means maintaining multiple copies of data and seri‐
ously disrupting your design, both in the database and in your application. Further,
you almost certainly need to find a way around distributed transactions, which will
quickly become a bottleneck. These compensatory actions are not directly supported
in any but the most expensive RDBMSs. And even if you can write such a huge check,
you still need to carefully choose partitioning keys to the point where you can never
entirely ignore the limitation.

Perhaps more importantly, as you see some of the limitations of RDBMSs and conse‐
quently some of the strategies that architects have used to mitigate their scaling
issues, a picture slowly starts to emerge. It’s a picture that makes some NoSQL
solutions seem perhaps less radical and less scary than you may have thought at first,

12 | Chapter 1: Beyond Relational Databases

https://oreil.ly/prH9l
https://oreil.ly/prH9l

and more like a natural expression and encapsulation of some of the work that was
already being done to manage very large databases.

Because of some of the inherent design decisions in RDBMSs, it is not always as easy
to scale as some other, more recent possibilities that take the structure of the web into
consideration. However, it’s not only the structure of the web you need to consider,
but also its phenomenal growth, because as more and more data becomes available,
you need architectures that allow your organization to take advantage of this data in
near real time to support decision making, and to offer new and more powerful fea‐
tures and capabilities to your customers.

Data Scale, Then and Now

It has been said, though it is hard to verify, that the 17th-century
English poet John Milton had actually read every published book
on the face of the earth. Milton knew many languages (he was even
learning Navajo at the time of his death), and given that the total
number of published books at that time was in the thousands, this
would have been possible. The size of the world’s data stores have
grown somewhat since then.

With the rapid growth in the web, there is great variety to the kinds of data that need
to be stored, processed, and queried, and some variety to the businesses that use such
data. Consider not only customer data at familiar retailers or suppliers, and not only
digital video content, but also the required move to digital television and the explo‐
sive growth of email, messaging, mobile phones, RFID, Voice Over IP (VoIP) usage,
and the Internet of Things (IoT). Companies that provide content—and the third-
party value-add businesses built around them—require very scalable data solutions.
Consider too that a typical business application developer or database administrator
may be used to thinking of relational databases as the center of the universe. You
might then be surprised to learn that within corporations, around 80% of data is
unstructured.

The Rise of NoSQL
The recent interest in nonrelational databases reflects the growing sense of need in
the software development community for web scale data solutions. The term
“NoSQL” began gaining popularity around 2009 as a shorthand way of describing
these databases. The term has historically been the subject of much debate, but a con‐
sensus has emerged that the term refers to nonrelational databases that support “not
only SQL” semantics.

Various experts have attempted to organize these databases in a few broad categories;
let’s examine a few of the most common:

The Rise of NoSQL | 13

Key-value stores
In a key-value store, the data items are keys that have a set of attributes. All data
relevant to a key is stored with the key; data is frequently duplicated. Popular
key-value stores include Amazon’s Dynamo DB, Riak, and Voldemort. Addition‐
ally, many popular caching technologies act as key-value stores, including Oracle
Coherence, Redis, and Memcached.

Column stores
In a column store, also known as a wide-column store or column-oriented store,
data is stored by column rather than by row. For example, in a column store, all
customer addresses might be stored together, allowing them to be retrieved in a
single query. Popular column stores include Apache Hadoop’s HBase, Apache
Kudu, and Apache Druid.

Document stores
The basic unit of storage in a document database is the complete document,
often stored in a format such as JSON, XML, or YAML. Popular document stores
include MongoDB, CouchDB, and several public cloud offerings.

Graph databases
Graph databases represent data as a graph—a network of nodes and edges that
connect the nodes. Both nodes and edges can have properties. Because they give
heightened importance to relationships, graph databases such as Neo4j, Janus‐
Graph, and DataStax Graph have proven popular for building social networking
and semantic web applications.

Object databases
Object databases store data not in terms of relations and columns and rows, but
in terms of objects as understood from the discipline of object-oriented program‐
ming. This makes it straightforward to use these databases from object-oriented
applications. Object databases such as db4o and InterSystems Caché allow you to
avoid techniques like stored procedures and object-relational mapping (ORM)
tools. The most widely used object database is Amazon Web Services’ Simple
Storage Service (S3).

XML databases
XML databases are a special form of document databases, optimized specifically
for working with data described in the eXtensible Markup Language (XML). So-
called “XML native” databases include BaseX and eXist.

Multimodel databases
Databases that support more than one of these styles have been growing in popu‐
larity. These “multimodel” databases are based on a primary underlying database
(most often a relational, key-value, or column store) and expose additional mod‐
els as APIs on top of that underlying database. Examples of these include

14 | Chapter 1: Beyond Relational Databases

Microsoft Azure Cosmos DB, which exposes document, wide column, and graph
APIs on top of a key-value store, and DataStax Enterprise, which offers a graph
API on top of Cassandra’s wide column model. Multimodel databases are often
touted for their ability to support an approach known as polyglot persistence, in
which different microservices or components of an application can interact with
data using more than one of the models we’ve described here. We’ll discuss an
example of polyglot persistence in Chapter 7.

Learning More About NoSQL Databases

For a comprehensive list of NoSQL databases, see the NoSQL site.
The DB-Engines site also provides popularity rankings of popular
databases by type, updated monthly.

There is wide variety in the goals and features of these databases, but they tend to
share a set of common characteristics. The most obvious of these is implied by the
name NoSQL—these databases support data models, Data Definition Languages
(DDLs), and interfaces beyond the standard SQL available in popular relational data‐
bases. In addition, these databases are typically distributed systems without central‐
ized control. They emphasize horizontal scalability and high availability, in some
cases at the cost of strong consistency and ACID semantics. They tend to support
rapid development and deployment. They take flexible approaches to schema defini‐
tion, in some cases not requiring any schema to be defined up front. They provide
support for Big Data and analytics use cases.

Over the past decade, there have been a large number of open source and commercial
offerings in the NoSQL space. The adoption and quality of these have varied widely,
but leaders have emerged in the categories just discussed, and many have become
mature technologies with large installation bases and commercial support. We’re
happy to report that Cassandra is one of those technologies, as we’ll dig into more in
the next chapter.

New Relational Architectures and NewSQL
Many of the challenges with previous approaches to scale relational databases that
we’ve described in this chapter can be attributed to designs that attempted to graft dis‐
tributed systems principles on top of existing database engines, with generally unsat‐
isfactory results.

In response to the criticisms of traditional RDBMS that we’ve summarized in this
chapter, database researchers began to explore new approaches for creating more
scalable relational systems. In 2012, two key papers were published, proposing new
approaches for providing transactional guarantees at scale. The first was the Calvin
transaction protocol developed at Yale University described an approach based on a

The Rise of NoSQL | 15

https://oreil.ly/KLChH
https://oreil.ly/qdJnx
https://oreil.ly/Dsqm8
https://oreil.ly/Dsqm8

global consensus protocol used by all transactions on a database. FaunaDB is an
example of a database that implements the approach on the Calvin paper.

Google’s Spanner paper, published a couple of months later, proposed an approach in
which the database is divided into shards and a separate consensus protocol is applied
to shards to support transactional guarantees. Google Cloud Spanner, CockroachDB,
and YugaByteDB are examples of databases that follow this approach.

Don’t worry if the references to consistency don’t make sense yet; we’ll dive into this
more in “Brewer’s CAP Theorem” on page 23. The main takeaway for now is that
these so called NewSQL databases were designed from the ground up to support
ACID transaction semantics at scale. Note that the reference to SQL is possibly mis‐
leading, as not all of these databases provide full ANSI SQL support.

Summary
The relational model has served the software industry well over the past four decades,
but the level of availability and scalability required for modern applications has
stretched traditional relational database technology to the breaking point.

The intention of this book is not to convince you by clever argument to adopt a non-
relational database such as Apache Cassandra. It is only our intention to present what
Cassandra can do and how it does it so that you can make an informed decision and
get started working with it in practical ways if you find it applies.

Perhaps the ultimate question, then, is not “What’s Wrong with Relational Data‐
bases?” but rather, “What kinds of things would I do with data if it wasn’t a problem?”
In a world now working at web scale and looking to the future, Apache Cassandra
might be one part of the answer.

16 | Chapter 1: Beyond Relational Databases

https://oreil.ly/fuxLh

CHAPTER 2

Introducing Cassandra

An invention has to make sense in the world in which it is finished, not the world in
which it is started.

—Ray Kurzweil

In the previous chapter, we discussed the emergence of nonrelational database tech‐
nologies in order to meet the increasing demands of modern web scale applications.
In this chapter, we’ll focus on Cassandra’s value proposition and key tenets to show
how it rises to the challenge. You’ll also learn about Cassandra’s history and how you
can get involved in the open source community that maintains Cassandra.

The Cassandra Elevator Pitch
Hollywood screenwriters and software entrepreneurs are often advised to have their
“elevator pitch” ready. This is a summary of exactly what their product is all about—
concise, clear, and brief enough to deliver in just a minute or two, in the lucky event
that they find themselves sharing an elevator with an executive, agent, or investor
who might consider funding their project. Cassandra has a compelling story, so let’s
boil it down to an elevator pitch that you can present to your manager or colleagues
should the occasion arise.

Cassandra in 50 Words or Less
“Apache Cassandra is an open source, distributed, decentralized, elastically scalable,
highly available, fault-tolerant, tuneably consistent, row-oriented database. Cassandra
bases its distribution design on Amazon’s Dynamo and its data model on Google’s
Bigtable, with a query language similar to SQL. Created at Facebook, it now powers
cloud-scale applications across many industries.” That’s exactly 50 words.

17

Of course, if you were to recite that to your boss in the elevator, you’d probably get a
blank look in return. So let’s break down the key points in the following sections.

Distributed and Decentralized
Cassandra is distributed, which means that it is capable of running on multiple
machines while appearing to users as a unified whole. In fact, there is little point in
running a single Cassandra node. Although you can do it, and that’s acceptable for
getting up to speed on how it works, you quickly realize that you’ll need multiple
machines to really realize any benefit from running Cassandra. Much of its design
and codebase is specifically engineered toward not only making it work across many
different machines, but also for optimizing performance across multiple data center
racks, and even for a single Cassandra cluster running across geographically dis‐
persed data centers. You can confidently write data to anywhere in the cluster and
Cassandra will get it.

Once you start to scale many other data stores (MySQL, Bigtable), some nodes need
to be set up as primary replicas in order to organize other nodes, which are set up as
secondary replicas. Cassandra, however, is decentralized, meaning that every node is
identical; no Cassandra node performs certain organizing operations distinct from
any other node. Instead, Cassandra features a peer-to-peer architecture and uses a
gossip protocol to maintain and keep in sync a list of nodes that are alive or dead.
We’ll discuss this more in “Gossip and Failure Detection” on page 108.

The fact that Cassandra is decentralized means that there is no single point of failure.
All of the nodes in a Cassandra cluster function exactly the same. This is sometimes
referred to as “server symmetry.” Because they are all doing the same thing, by defini‐
tion there can’t be a special host that is coordinating activities, as with the primary/
secondary setup that you see in MySQL, Bigtable, and so many other databases.

In many distributed data solutions (such as RDBMS clusters), you set up multiple
copies of data on different servers in a process called replication, which copies the
data to multiple machines so that they can all serve simultaneous requests and
improve performance. Typically this process is not decentralized, as in Cassandra, but
is rather performed by defining a primary/secondary relationship. That is, all of the
servers in this kind of cluster don’t function in the same way. You configure your
cluster by designating one server as the primary (or primary replica) and others as
secondary replicas. The primary replica acts as the authoritative source of the data,
and operates in a unidirectional relationship with the secondary replicas, which must
synchronize their copies. If the primary node fails, the whole database is in jeopardy.
To work around the situation of the primary as a single point of failure, you often
need to add complexity to the environment in the form of multiple primary nodes.
Note that while we frequently understand primary/secondary replication in the
RDBMS world, there are NoSQL databases such as MongoDB that follow the

18 | Chapter 2: Introducing Cassandra

primary/secondary scheme as well. Even Mongo’s “replica set” mechanism is essen‐
tially a primary/secondary scheme in which the primary can be replaced by an auto‐
mated leader election process.

Decentralization, therefore, has two key advantages: it’s simpler to use than primary/
secondary, and it helps you avoid outages. It is simpler to operate and maintain a
decentralized store than a primary/secondary store because all nodes are the same.
That means that you don’t need any special knowledge to scale; setting up 50 nodes
isn’t much different from setting up one. There’s next to no configuration required to
support it. Because all of the replicas in Cassandra are identical, failures of a node
won’t disrupt service.

In short, because Cassandra is distributed and decentralized, there is no single point
of failure, which supports high availability.

Elastic Scalability
Scalability is an architectural feature of a system that can continue serving a greater
number of requests with little degradation in performance. Vertical scaling—simply
adding more processing capacity and memory to your existing machine—is the easi‐
est way to achieve this. Horizontal scaling means adding more machines that have all
or some of the data on them so that no one machine has to bear the entire burden of
serving requests. But then the software itself must have an internal mechanism for
keeping its data in sync with the other nodes in the cluster.

Elastic scalability refers to a special property of horizontal scalability. It means that
your cluster can seamlessly scale up and scale back down. To do this, the cluster must
be able to accept new nodes that can begin participating by getting a copy of some or
all of the data and start serving new user requests without major disruption or recon‐
figuration of the entire cluster. You don’t have to restart your process. You don’t have
to change your application queries. You don’t have to manually rebalance the data
yourself. Just add another machine—Cassandra will find it and start sending it work.

Scaling down, of course, means removing some of the processing capacity from your
cluster. You might do this for business reasons, such as adjusting to seasonal work‐
loads in retail or travel applications. Or perhaps there will be technical reasons such
as moving parts of your application to another platform. As much as we try to mini‐
mize these situations, they still happen. But when they do, you won’t need to upset the
entire apple cart to scale back.

High Availability and Fault Tolerance
In general architecture terms, the availability of a system is measured according to its
ability to fulfill requests. But computers can experience all manner of failure, from
hardware component failure to network disruption to corruption. Any computer is

The Cassandra Elevator Pitch | 19

susceptible to these kinds of failure. There are of course very sophisticated (and often
prohibitively expensive) computers that can themselves mitigate many of these cir‐
cumstances, as they include internal hardware redundancies and facilities to send
notification of failure events and hot swap components. But anyone can accidentally
break an Ethernet cable, and catastrophic events can beset a single data center. So for
a system to be highly available, it must typically include multiple networked comput‐
ers, and the software they’re running must then be capable of operating in a cluster
and have some facility for recognizing node failures and failing over requests to
another part of the system.

Cassandra is highly available. You can replace failed nodes in the cluster with no
downtime, and you can replicate data to multiple data centers to offer improved local
performance and prevent downtime if one data center experiences a catastrophe such
as fire or flood.

Tuneable Consistency
Consistency is an overloaded term in the database world, but for our purposes we will
use the definition that a read always returns the most recently written value. Consider
the case of two customers attempting to put the same item into their shopping carts
on an ecommerce site. If I place the last item in stock into my cart an instant after you
do, you should get the item added to your cart, and I should be informed that the
item is no longer available for purchase. This is guaranteed to happen when the state
of a write is consistent among all nodes that have that data.

But as we’ll see later, scaling data stores means making certain trade-offs among data
consistency, node availability, and partition tolerance. Cassandra is frequently called
“eventually consistent,” which is a bit misleading. Out of the box, Cassandra trades
some consistency in order to achieve total availability. But Cassandra is more accu‐
rately termed “tuneably consistent,” which means it allows you to easily decide the
level of consistency you require, in balance with the level of availability.

Let’s take a moment to unpack this, as the term “eventual consistency” has caused
some uproar in the industry. Some practitioners hesitate to use a system that is
described as “eventually consistent.”

For detractors of eventual consistency, the broad argument goes something like this:
eventual consistency is maybe OK for social web applications where data doesn’t
really matter. After all, you’re just posting to Mom what little Billy ate for breakfast,
and if it gets lost, it doesn’t really matter. But the data I have is actually really impor‐
tant, and it’s ridiculous to think that I could allow eventual consistency in my model.

Set aside the number of large-scale web applications (Amazon, Facebook, Google,
Twitter) that use this model, and perhaps there’s something to this argument. Pre‐
sumably such data is very important indeed to the companies running these

20 | Chapter 2: Introducing Cassandra

applications, because that data is their primary product, and they are multibillion-
dollar companies with billions of users to satisfy in a sharply competitive world. It
may be possible to gain guaranteed, immediate, and perfect consistency throughout a
highly trafficked system running in parallel on a variety of networks, but if you want
clients to get their results sometime this year, it’s a very tricky proposition.

The detractors claim that databases like Cassandra have merely eventual consistency,
and that all other distributed systems have strict consistency. As with so many things
in the world, however, the reality is not so black and white, and the binary opposition
between consistent and not-consistent is not truly reflected in practice. There are
instead degrees of consistency, and in the real world they are very susceptible to exter‐
nal circumstance.

Eventual consistency is one of several consistency models available to architects. Let’s
take a look at these models so we can understand the trade-offs:

Strict consistency
This is sometimes called sequential consistency, and is the most stringent level of
consistency. It requires that any read will always return the most recently written
value. That sounds perfect, and it’s exactly what I’m looking for. I’ll take it! How‐
ever, upon closer examination, what do we find? What precisely is meant by
“most recently written”? Most recently to whom? In one single-processor
machine, this is no problem to observe, as the sequence of operations is known
to the one clock. But in a system executing across a variety of geographically dis‐
persed data centers, it becomes much more slippery. Achieving this implies some
sort of global clock that is capable of timestamping all operations, regardless of
the location of the data or the user requesting it or how many (possibly disparate)
services are required to determine the response.

Causal consistency
This is a slightly weaker form of strict consistency. It does away with the fantasy
of the single global clock that can magically synchronize all operations without
creating an unbearable bottleneck. Instead of relying on timestamps, causal con‐
sistency takes a more semantic approach, attempting to determine the cause of
events to create some consistency in their order. It means that writes that are
potentially related must be read in sequence. If two different, unrelated opera‐
tions suddenly write to the same field at the same time, then those writes are
inferred not to be causally related. But if one write occurs after another, we might
infer that they are causally related. Causal consistency dictates that causal writes
must be read in sequence.

Weak (eventual) consistency
Eventual consistency means on the surface that all updates will propagate
throughout all of the replicas in a distributed system, but that this may take some
time. Eventually, all replicas will be consistent.

The Cassandra Elevator Pitch | 21

Eventual consistency becomes suddenly very attractive when you consider what is
required to achieve stronger forms of consistency.

When considering consistency, availability, and partition tolerance, we can achieve
only two of these goals in a given distributed system, a trade-off known as the CAP
theorem (we explore this theorem in more depth in “Brewer’s CAP Theorem”). At the
center of the problem is data update replication. To achieve a strict consistency, all
update operations will be performed synchronously, meaning that they must block,
locking all replicas until the operation is complete, and forcing competing clients to
wait. A side effect of such a design is that during a failure, some of the data will be
entirely unavailable. As Amazon CTO Werner Vogels puts it, “rather than dealing
with the uncertainty of the correctness of an answer, the data is made unavailable
until it is absolutely certain that it is correct.”

We could alternatively take an optimistic approach to replication, propagating
updates to all replicas in the background in order to avoid blowing up on the client.
The difficulty this approach presents is that now we are forced into the situation of
detecting and resolving conflicts. A design approach must decide whether to resolve
these conflicts at one of two possible times: during reads or during writes. That is, a
distributed database designer must choose to make the system either always readable
or always writable.

Dynamo and Cassandra choose to be always writable, opting to defer the complexity
of reconciliation to read operations, and realize tremendous performance gains. The
alternative is to reject updates amidst network and server failures.

In Cassandra, consistency is not an all-or-nothing proposition. A more accurate term
is “tuneable consistency” because the client can control the number of replicas to
block on for all updates. This is done by setting the consistency level against the repli‐
cation factor.

You set the replication factor to the number of nodes in the cluster you want the
updates to propagate to (remember that an update means any add, update, or delete
operation).

The consistency level is a setting that clients must specify on every operation and that
allows you to decide how many replicas in the cluster must acknowledge a write oper‐
ation or respond to a read operation in order to be considered successful. That’s the
part where Cassandra has pushed the decision for determining consistency out to the
client.

So if you like, you could set the consistency level to a number equal to the replication
factor, and gain stronger consistency at the cost of synchronous blocking operations
that wait for all nodes to be updated and declare success before returning. This is not
often done in practice with Cassandra, however, for reasons that should be clear (it
defeats the availability goal, would impact performance, and generally goes against

22 | Chapter 2: Introducing Cassandra

https://oreil.ly/CtOZw

the grain of why you’d want to use Cassandra in the first place). So if the client sets
the consistency level to a value less than the replication factor, the update is consid‐
ered successful even if some nodes are down.

Brewer’s CAP Theorem
In order to understand Cassandra’s design and its label as an “eventually consistent”
database, we need to understand the CAP theorem. The CAP theorem is sometimes
called Brewer’s theorem after its author, Eric Brewer.

While working at the University of California at Berkeley, Eric Brewer posited his
CAP theorem in 2000 at the ACM Symposium on the Principles of Distributed Com‐
puting. The theorem states that within a large-scale distributed data system, there are
three requirements that have a relationship of sliding dependency:

Consistency
All database clients will read the same value for the same query, even given con‐
current updates.

Availability
All database clients will always be able to read and write data.

Partition tolerance
The database can be split into multiple machines; it can continue functioning in
the face of network segmentation breaks.

Brewer’s theorem is that in any given system, you can strongly support only two of
the three. This is analogous to the saying you may have heard in software develop‐
ment: “You can have it good, you can have it fast, you can have it cheap: pick two.”

We have to choose between them because of this sliding mutual dependency. The
more consistency you demand from your system, for example, the less partition-
tolerant you’re likely to be able to make it, unless you make some concessions around
availability.

The CAP theorem was formally proved to be true by Seth Gilbert and Nancy Lynch
of MIT in 2002. In distributed systems, however, it is very likely that you will have
network partitioning, and that at some point, machines will fail and cause others to
become unreachable. Networking issues such as packet loss or high latency are nearly
inevitable and have the potential to cause temporary partitions. This leads us to the
conclusion that a distributed system must do its best to continue operating in the face
of network partitions (to be partition tolerant), leaving us with only two real options
to compromise on: availability and consistency.

Figure 2-1 illustrates visually that there is no overlapping segment where all three are
obtainable.

The Cassandra Elevator Pitch | 23

Figure 2-1. CAP theorem indicates that you can realize only two of these properties at
once

It might prove useful at this point to see a graphical depiction of where each of the
nonrelational data stores we’ll look at falls within the CAP spectrum. The graphic in
Figure 2-2 was inspired by a slide in a 2009 talk given by Dwight Merriman, CEO and
founder of MongoDB, to the MySQL User Group in New York City. However, we
have modified the placement of some systems based on research.

Figure 2-2 shows the general focus of some of the different databases we discuss in
this chapter. Note that placement of the databases in this chart could change based on
configuration. As Stu Hood points out, a distributed MySQL database can count as a
consistent system only if you’re using Google’s synchronous replication patches;
otherwise, it can only be available and partition tolerant (AP).

It’s interesting to note that the design of the system around CAP placement is inde‐
pendent of the orientation of the data storage mechanism; for example, the CP edge is
populated by graph databases and document-oriented databases alike.

In this depiction, relational databases are on the line between consistency and availa‐
bility, which means that they can fail in the event of a network failure (including a
cable breaking). This is typically achieved by defining a single primary replica, which
could itself go down, or an array of servers that simply don’t have sufficient mecha‐
nisms built in to continue functioning in the case of network partitions.

Graph databases such as Neo4j and the set of databases derived at least in part from
the design of Google’s Bigtable database (such as MongoDB, HBase, Hypertable, and

24 | Chapter 2: Introducing Cassandra

https://oreil.ly/CXv5c
https://oreil.ly/CXv5c

Redis) all are focused slightly less on availability and more on ensuring consistency
and partition tolerance.

Figure 2-2. Where different databases appear on the CAP continuum

Finally, the databases derived from Amazon’s Dynamo design include Cassandra,
Project Voldemort, CouchDB, and Riak. These are more focused on availability and
partition tolerance. However, this does not mean that they dismiss consistency as
unimportant, any more than Bigtable dismisses availability. According to the Bigtable
paper, the average percentage of server hours that “some data” was unavailable is
0.0047% (section 4), so this is relative, as we’re talking about very robust systems
already. If you think of each of these letters (C, A, P) as knobs you can tune to arrive
at the system you want, Dynamo derivatives are intended for employment in the
many use cases where “eventual consistency” is tolerable and where “eventual” is a
matter of milliseconds, read repairs mean that reads will return consistent values, and
you can achieve strong consistency if you want to.

So what does it mean in practical terms to support only two of the three facets of
CAP?

CA
To primarily support consistency and availability means that you’re likely using
two-phase commit for distributed transactions. It means that the system will
block when a network partition occurs, so it may be that your system is limited to
a single data center cluster in an attempt to mitigate this. If your application
needs only this level of scale, this is easy to manage and allows you to rely on
familiar, simple structures.

The Cassandra Elevator Pitch | 25

CP
To primarily support consistency and partition tolerance, you may try to advance
your architecture by setting up data shards in order to scale. Your data will be
consistent, but you still run the risk of some data becoming unavailable if nodes
fail.

AP
To primarily support availability and partition tolerance, your system may return
inaccurate data, but the system will always be available, even in the face of net‐
work partitioning. DNS is perhaps the most popular example of a system that is
massively scalable, highly available, and partition tolerant.

Note that this depiction is intended to offer an overview that helps draw distinctions
between the broader contours in these systems; it is not strictly precise. For example,
it’s not entirely clear where Google’s Bigtable should be placed on such a continuum.
The Google paper describes Bigtable as “highly available,” but later goes on to say that
if Chubby (the Bigtable persistent lock service) “becomes unavailable for an extended
period of time [caused by Chubby outages or network issues], Bigtable becomes
unavailable” (section 4). On the matter of data reads, the paper says that “we do not
consider the possibility of multiple copies of the same data, possibly in alternate
forms due to views or indices.” Finally, the paper indicates that “centralized control
and Byzantine fault tolerance are not Bigtable goals” (section 10). Given such variable
information, you can see that determining where a database falls on this sliding scale
is not an exact science.

The CAP Theorem—An Ongoing Conversation
In February 2012, Eric Brewer provided an updated perspective on his CAP theorem
in the article “CAP Twelve Years Later: How the Rules Have Changed” in IEEE’s Com‐
puter. Brewer now describes the “pick two” axiom as somewhat misleading. He notes
that designers only need sacrifice consistency or availability in the presence of parti‐
tions, and that advances in partition recovery techniques have made it possible for
designers to achieve high levels of both consistency and availability.

These advances in partition recovery certainly would include Cassandra’s usage of
mechanisms such as hinted handoff and read repair. We’ll explore these in Chapter 6.
However, it is important to recognize that these partition recovery mechanisms are
not infallible. There is still immense value in Cassandra’s tuneable consistency, allow‐
ing Cassandra to function effectively in a diverse set of deployments in which it is not
possible to completely prevent partitions.

In recent years Eric Brewer has joined the Google Cloud Platform team. In his 2017
blog post “Inside Cloud Spanner and the CAP Theorem”, he evaluates Google Span‐
ner in terms of the CAP theorem. While Brewer cites the high availability of Google’s
infrastructure as a justification for arguing that Spanner effectively behaves as a CA

26 | Chapter 2: Introducing Cassandra

https://oreil.ly/6qToG
https://oreil.ly/S5LAs

system, he acknowledges that since partitions still occasionally occur, it is technically
a CP system.

Row-Oriented
Cassandra’s data model can be described as a partitioned row store, in which data is
stored in sparse multidimensional hash tables. “Sparse” means that for any given row
you can have one or more columns, but each row doesn’t need to have all the same
columns as other rows like it (as in a relational model). “Partitioned” means that each
row has a unique partition key used to distribute the rows across multiple data stores.
Somewhat confusingly, this type of data model is also frequently referred to as a wide
column store, for example by the DB-Engines website.

Row-Oriented Versus Column-Oriented

Cassandra has frequently been referred to as a column-oriented or
columnar database, but this is not technically correct. The mistake
is based on confusion between similar sounding terms. A column-
oriented database is one in which the data is stored by columns, as
opposed to relational databases, which store data in rows (hence
the term row-oriented). Column-oriented databases such as Apache
HBase or Apache Kudu are designed for analytic use cases.

In the relational storage model, all of the columns for a table are defined beforehand
and space is allocated for each column whether it is populated or not. In contrast,
Cassandra stores data in a multidimensional, sorted hash table. As data is stored in
each column, it is stored as a separate entry in the hash table. Column values are
stored according to a consistent sort order, omitting columns that are not populated,
which enables more efficient storage and query processing. We’ll examine Cassandra’s
data model in more detail in Chapter 4.

Is Cassandra “Schema-Free”?
In its early versions, Cassandra was faithful to the original Bigtable whitepaper in
supporting a “schema-free” data model in which new columns can be defined dynam‐
ically. Schema-free databases such as Bigtable and MongoDB have the advantage of
being very extensible and highly performant in accessing large amounts of data. The
major drawback of schema-free databases is the difficulty in determining the meaning
and format of data, which limits the ability to perform complex queries. These disad‐
vantages proved a barrier to adoption for many, especially as startup projects that
benefited from the initial flexibility matured into more complex enterprises involving
multiple developers and administrators.

The Cassandra Elevator Pitch | 27

https://oreil.ly/yCwcY

The solution for those users was the introduction of the Cassandra Query Language
(CQL), which provides a way to define schema via a syntax similar to the Structured
Query Language (SQL) familiar to those coming from a relational background. Ini‐
tially, CQL was provided as another interface to Cassandra alongside the schema-free
interface based on the Apache Thrift project. During this transitional phase, the term
“schema-optional” was used to describe that data models could be defined by schema
using CQL, but could also be dynamically extended to add new columns via the
Thrift API. During this period, the underlying data storage continued to be based on
the Bigtable model.

For the 3.0 release, Cassandra’s underlying storage was re-implemented to more
closely align with CQL. The Thrift-based API that supported dynamic column cre‐
ation was marked as deprecated in 3.0, and removed entirely in the 4.0 release. Cas‐
sandra does not entirely limit the ability to dynamically extend the schema on the fly,
but the way it works is significantly different. CQL collections such as lists, sets, and
maps provide the ability to add a variable number of values of a given type. CQL also
provides the ability to change the type of columns in certain instances, and facilities
to support the storage of JSON-formatted text.

So perhaps the best way to describe Cassandra’s current posture is that it supports
“flexible schema.”

High Performance
Cassandra was designed specifically from the ground up to take full advantage of
multiprocessor/multicore machines, and to run across many dozens of these
machines housed in multiple data centers. It scales consistently and seamlessly to
hundreds of terabytes. Cassandra has been shown to perform exceptionally well
under heavy load. It consistently can show very fast throughput for writes per second
on basic commodity computers, whether physical hardware or virtual machines. As
you add more servers, you can maintain all of Cassandra’s desirable properties
without sacrificing performance.

Where Did Cassandra Come From?
The Cassandra data store is an open source Apache project. Cassandra originated at
Facebook in 2007 to solve its inbox search problem—the company had to deal with
large volumes of data in a way that was difficult to scale with traditional methods.
Specifically, the team had requirements to handle huge volumes of data in the form of
message copies, reverse indices of messages, and many random reads and many
simultaneous random writes.

The team was led by Jeff Hammerbacher, with Avinash Lakshman, Karthik Rangana‐
than, and Facebook engineer on the Search Team Prashant Malik as key engineers.

28 | Chapter 2: Introducing Cassandra

http://cassandra.apache.org

The code was released as an open source Google Code project in July 2008. During its
tenure as a Google Code project in 2008, the code was updatable only by Facebook
engineers, and little community was built around it as a result. So in March 2009, it
was moved to an Apache Incubator project, and on February 17, 2010, it was voted
into a top-level project. The committers, many of whom have been with the project
since 2010/2011, represent companies, including Twitter, LinkedIn, and Apple, as
well as independent developers.

The Paper that Introduced Cassandra to the World

“Cassandra—A Decentralized Structured Storage System” by Face‐
book’s Lakshman and Malik was a central paper on Cassandra. An
updated commentary on this paper was provided by Jonathan Ellis
corresponding to the 2.0 release, noting changes to the technology
since the transition to Apache.

How Did Cassandra Get Its Name?
In Greek mythology, Cassandra was the daughter of King Priam and Queen Hecuba
of Troy. Cassandra was so beautiful that the god Apollo gave her the ability to see the
future. But when she refused his amorous advances, he cursed her such that she
would still be able to accurately predict everything that would happen—but no one
would believe her. Cassandra foresaw the destruction of her city of Troy, but was
powerless to stop it. The Cassandra distributed database is named for her. We specu‐
late that it is also named as kind of a joke on the Oracle at Delphi, another seer for
whom a database is named.

As commercial interest in Cassandra grew, the need for production support became
apparent. Jonathan Ellis, the first Apache Project Chair for Cassandra, and his collea‐
gue Matt Pfeil formed a services company called DataStax (originally known as Rip‐
tano) in April of 2010. DataStax provided leadership and support for the Cassandra
project, employing several Cassandra committers, as well as free products, including
Cassandra drivers for various languages and tools for development and administra‐
tion of Cassandra. Paid product offerings include enterprise versions of the Cassan‐
dra server and tools, integrations with other data technologies, and product support.

During the period from 2010 to 2016, the Apache Project matured Cassandra over a
series of releases from 0.6 to 3.0. While the original API provided by Cassandra was
based on Apache Thrift, the introduction of the Cassandra Query Language in the 0.8
release marked a major shift toward improved usability and developer productivity
due to its similarity with SQL known by many from their previous RDBMS
experience. With the completion of a new storage engine in the 3.0 release, the Cas‐
sandra codebase was fully aligned from top to bottom around the CQL data model.

Where Did Cassandra Come From? | 29

https://oreil.ly/GpNBG
https://oreil.ly/I4p5Z

After the 3.0 release in 2016, Nate McCall took on the role of Apache Project Chair
for Cassandra. This period has been marked by continued growth in the community,
with enterprises including Apple, Facebook/Instagram, Netflix, and Uber providing
increased contributions to the project, as well as significant contributions from con‐
sultancies such as The Last Pickle and Pythian toward both the core database and
supporting tooling, and stability improvements and other bug fixes from DataStax.
These efforts have culminated in the Cassandra 4.0 release scheduled for 2020.

A well-known axiom in the software industry is that it takes 5 to 10 years for a new
database engine to reach a true battle-hardened level of maturity, and it has become
clear that Cassandra has reached this milestone. As Patrick McFadin, VP of Devel‐
oper Relations at DataStax, is fond of saying, “Everyone seems to have a bit of Cas‐
sandra running somewhere in their infrastructure.”

Is Cassandra a Good Fit for My Project?
We have now unpacked the elevator pitch and have an understanding of Cassandra’s
advantages. Despite Cassandra’s sophisticated design and smart features, it is not the
right tool for every job. So in this section, let’s take a quick look at what kind of
projects Cassandra is a good fit for.

Large Deployments
You probably don’t drive a semitruck to pick up your dry cleaning; semis aren’t well
suited for that sort of task. Lots of careful engineering has gone into Cassandra’s high
availability, tuneable consistency, peer-to-peer protocol, and seamless scaling, which
are its main selling points. None of these qualities is even meaningful in a single-node
deployment, let alone allowed to realize its full potential.

There are, however, a wide variety of situations where a single-node relational data‐
base is all we may need. So do some measuring. Consider your expected traffic,
throughput needs, and SLAs. There are no hard-and-fast rules here, but if you expect
that you can reliably serve traffic with an acceptable level of performance with just a
few relational databases, it might be a better choice to do so, simply because RDBMSs
are easier to run on a single machine and are more familiar.

If you think you’ll need at least several nodes to support your efforts, however, Cas‐
sandra might be a good fit. If your application is expected to require dozens of nodes,
Cassandra might be a great fit.

Lots of Writes, Statistics, and Analysis
Consider your application from the perspective of the ratio of reads to writes. Cassan‐
dra is optimized for excellent throughput on writes.

30 | Chapter 2: Introducing Cassandra

Many of the early production deployments of Cassandra involved storing user activ‐
ity updates, social network usage, recommendations/reviews, and application statis‐
tics. These are strong use cases for Cassandra because they involve lots of writing
with less predictable read operations, and because updates can occur unevenly with
sudden spikes. In fact, the ability to handle application workloads that require high
performance at significant write volumes with many concurrent client threads is one
of the primary features of Cassandra.

According to the project wiki, Cassandra has been used to create a variety of applica‐
tions, including a windowed time-series store, an inverted index for document
searching, and a distributed job priority queue.

Geographical Distribution
Cassandra has out-of-the-box support for geographical distribution of data. You can
easily configure Cassandra to replicate data across multiple data centers. If you have a
globally deployed application that could see a performance benefit from putting the
data near the user, Cassandra could be a great fit.

Hybrid Cloud and Multicloud Deployment
Another benefit of Cassandra’s flexible deployment means that not only can you
deploy it across multiple data centers, these data centers can be from multiple differ‐
ent providers. This makes Cassandra a great choice for a variety of different topolo‐
gies. In a hybrid cloud architecture, you might use Cassandra to replicate data from a
traditional on-premises data center to data centers within your favorite public cloud
provider as part of a digital transformation effort.

Further down the road, you might adopt a multicloud architecture and leverage Cas‐
sandra to replicate data between clouds in order to make that data accessible to best-
of-breed managed services offered by the top providers, such as a machine learning
service. Or perhaps you need your data accessible in multiple clouds in order to
ensure the highest possible availability for a mission-critical application. After all,
even the big public clouds have been known to have occasional region-wide outages.
The good news is that the challenging part of a multicloud Cassandra deployment is
more likely to be the network configuration, not the database.

Getting Involved
The strength and relevance of any technology depend on the investment of individu‐
als in a vibrant community environment. Thankfully, the Cassandra community is
active and healthy, offering a number of ways for you to participate. The awesome-
cassandra list maintained by Rahul Singh is a great resource that provides a compre‐
hensive list of Cassandra resources; we’ll highlight a few items here:

Getting Involved | 31

https://oreil.ly/3STpn
https://oreil.ly/3STpn

Forums
Cassandra is a popular topic on forums including Stack Overflow and Quora.
DataStax maintains a community site, which features areas for both the open
source project as well as DataStax products.

Mailing lists
The Apache project hosts several mailing lists to which you can subscribe to learn
about various topics of interest:

• user@cassandra.apache.org provides a general discussion list for users and is
frequently used by new users or those needing assistance.

• dev@cassandra.apache.org is used by developers to discuss changes, prioritize
work, and approve releases.

• client-dev@cassandra.apache.org is used for discussion specific to develop‐
ment of Cassandra clients for various programming languages.

• commits@cassandra.apache.org tracks Cassandra code commits. This is a
fairly high-volume list and is primarily of interest to committers.

Releases are typically announced to both the developer and user mailing lists.

Chat
Many of the Cassandra developers and community members hang out in the cas
sandra and cassandra-dev channels on the Apache Software Foundation’s Slack.
This informal environment is a great place to get your questions answered or
offer up some answers of your own. You can get an invitation to join the Slack
workspace at https://oreil.ly/FLD8r.

Blogs
The Apache Cassandra blog provides deep-dive technical articles on Cassandra
implementation details and features under development. Other blogs that refer‐
ence Cassandra frequently include the DataStax blog, the Instaclustr blog and the
Last Pickle blog.

Issues and improvements
If you encounter issues using Cassandra and feel you have discovered a defect,
feel free to submit an issue to the Cassandra JIRA. In fact, users who identify
defects on the user@cassandra.apache.org list are frequently encouraged to create
JIRA issues.

In November 2019, the Cassandra community formally approved a Cassandra
Enhancement Proposal (CEP) process to promote effective collaboration
between project contributors toward development of new features and significant
changes. You can read more about the CEP on the Apache website.

32 | Chapter 2: Introducing Cassandra

https://oreil.ly/QrE8X
https://oreil.ly/iJlGw
https://community.datastax.com
mailto:user@cassandra.apache.org
mailto:dev@cassandra.apache.org
mailto:client-dev@cassandra.apache.org
mailto:commits@cassandra.apache.org
https://oreil.ly/FLD8r
https://oreil.ly/o70Ei
https://oreil.ly/IAsy4
https://oreil.ly/Rb4xb
https://oreil.ly/fg_QG
https://oreil.ly/JwmUg
mailto:user@cassandra.apache.org
https://oreil.ly/0vaZ0

Meetups
A meetup group is a local community of people who meet face to face to discuss
topics of common interest. These groups provide an excellent opportunity to
network, learn, or share your knowledge by offering a presentation of your own.
There are Cassandra meetups on every continent, so you stand a good chance of
being able to find one in your area.

Conferences
Cassandra is a popular topic at the ApacheCon conferences hosted by the Apache
Software Foundation, as well as the Strata Data Conferences hosted by O’Reilly.
The Cassandra Project Management Committee (PMC) periodically hosts Next
Generation Cassandra Conferences (NGCC) where Cassandra committers and
other contributors share research and proposals for enhancements and new
features. After hosting a Cassandra Summit from 2012 to 2016, DataStax
resumed hosting conferences in 2019 with Accelerate, a conference focused on
Cassandra and DataStax technologies.

Training
DataStax offers training and certification on Apache Cassandra and DataStax
Enterprise at DataStax Academy.

A Marketable Skill

There continues to be increased demand for Cassandra developers
and administrators. A 2015 Dice.com salary survey placed Cassan‐
dra as the second most highly compensated software skill set.
(More recent surveys are available but require login.)

Getting Involved | 33

https://meetup.com
https://academy.datastax.com
https://oreil.ly/Gjgzl

Summary
In this chapter, we’ve taken an introductory look at Cassandra’s defining characteris‐
tics, history, and major features. We have learned about the Cassandra user commu‐
nity and how companies are using Cassandra. Now we’re ready to start getting some
hands-on experience.

34 | Chapter 2: Introducing Cassandra

CHAPTER 3

Installing Cassandra

For those among us who like instant gratification, let’s start by installing Cassandra.
Because Cassandra introduces a lot of new vocabulary, there might be some unfami‐
liar terms as you walk through this. That’s OK; the idea here is to get set up quickly in
a simple configuration to make sure everything is running properly. This will serve as
an orientation. Then, we’ll take a step back and explain Cassandra in its larger
context.

Installing the Apache Distribution
While there are a number of options available for installing Cassandra on various
operating systems, let’s start your journey by downloading the Apache distribution
from http://cassandra.apache.org so you can get a good look at what’s inside. We’ll
explore other installation options in “Other Cassandra Distributions” on page 44.

Click the link on the Cassandra home page to download a version as a gzipped
archive. Typically, multiple versions of Cassandra are provided. The latest version is
the current recommended version for use in production. There are other supported
releases that are still viable for production usage and receive bug fixes. The project
goal is to limit the number of supported releases, but reasonable accommodations are
made. For example, the 2.2 and 2.1 releases were considered to be officially main‐
tained through the release of 4.0. For all releases, the prebuilt binary is named apache-
cassandra-x.x.x-bin.tar.gz, where x.x.x represents the version number. The download
for Cassandra 4.0 is around 40 MB.

35

http://cassandra.apache.org

Extracting the Download
You can unpack the compressed file using any regular ZIP utility. On Unix-based sys‐
tems such as Linux or macOS, gzip extraction utilities should be preinstalled; on
Windows, you’ll need to get a program such as WinZip, which is commercial, or
something like 7-Zip, which is freeware.

Open your extracting program. You might have to extract the ZIP file and the TAR
file in separate steps. Once you have a folder on your filesystem called apache-
cassandra-x.x.x, you’re ready to run Cassandra.

What’s in There?
Once you decompress the tarball, you’ll see that the Cassandra binary distribution
includes several files and directories.

The files include the NEWS.txt file, which includes the release notes describing fea‐
tures included in the current and prior releases, and the CHANGES.txt file, which is
similar but focuses on bug fixes. You’ll want to make sure to review these files when‐
ever you are upgrading to a new version so you know what changes to expect. The
LICENSE.txt and NOTICE.txt files contain the Apache 2.0 license used by Cassandra,
and copyright notices for Cassandra and included software, respectively.

Let’s take a moment now to look around in the different directories and see what’s
there:

bin
This directory contains the executables to run Cassandra as well as clients,
including the query language shell (cqlsh). It also has scripts to run the node
tool, which is a utility for inspecting a cluster to determine whether it is properly
configured, and to perform a variety of maintenance operations. We look at node
tool in depth later. The directory also contains several utilities for performing
operations on SSTables, the files in which Cassandra stores its data on disk. We’ll
discuss these utilities in Chapter 12.

conf
This directory contains the files for configuring your Cassandra instance. The
configuration files you may use most frequently include the cassandra.yaml file,
which is the primary configuration for running Cassandra, and the logback.xml
file, which lets you change the logging settings to suit your needs. Additional files
can be used to configure Java Virtual Machine (JVM) settings, the network topol‐
ogy, metrics reporting, archival and restore commands, and triggers. You’ll learn
how to use these configuration files in Chapter 10.

36 | Chapter 3: Installing Cassandra

http://www.7-zip.org

doc
Traditionally, documentation has been one of the weaker areas of the project, but
a concerted effort for the 4.0 release, including sponsorship from the Google Sea‐
son of Docs project, yielded significant progress to the documentation included
in the Cassandra distribution as well as the documentation on the Cassandra
website. The documentation includes a getting started guide, an architectural
overview, and instructions for configuring and operating Cassandra.

javadoc
This directory contains a documentation website generated using Java’s JavaDoc
tool. Note that JavaDoc reflects only the comments that are stored directly in the
Java code, and as such does not represent comprehensive documentation. It’s
helpful if you want to see how the code is laid out. Moreover, Cassandra is a won‐
derful project, but the code contains relatively few comments, so you might find
the JavaDoc’s usefulness limited. It may be more fruitful to simply read the class
files directly if you’re familiar with Java. Nonetheless, to read the JavaDoc, open
the javadoc/index.html file in a browser.

lib
This directory contains all of the external libraries that Cassandra needs to run.
For example, it uses two different JSON serialization libraries, the Google collec‐
tions project, and several Apache Commons libraries.

pylib
This directory contains Python libraries that are used by cqlsh.

tools
This directory contains tools that are used to maintain your Cassandra nodes.
You’ll learn about these tools in Chapter 12.

Additional Directories

If you’ve already run Cassandra using the default configuration,
you will notice two additional directories under the main Cassan‐
dra directory: data and log. We’ll discuss the contents of these
directories momentarily.

Installing the Apache Distribution | 37

https://oreil.ly/p2jP2
https://oreil.ly/p2jP2
https://oreil.ly/THfB6
https://oreil.ly/THfB6

Building from Source
Cassandra uses Apache Ant for its build scripting language and Maven for depend‐
ency management.

Downloading Ant

You can download Ant from http://ant.apache.org. You don’t need
to download Maven separately just to build Cassandra.

Building from source requires a complete Java 8 JDK (or later version), not just the
Java Runtime Environment (JRE). If you see a message about how Ant is missing
tools.jar, either you don’t have the full JDK or you’re pointing to the wrong path in
your environment variables. Maven downloads files from the internet, so if your con‐
nection is invalid or Maven cannot determine the proxy, the build will fail.

Downloading Development Builds

If you want to download the latest Cassandra builds or view test
results, you can find these in Jenkins, which the Cassandra project
uses as its continuous integration tool. See this Jenkins page for the
latest builds and test coverage information.

If you are interested in having a look at the Cassandra source, you can get the trunk
version of the Cassandra source using this command:

$ git clone https://github.com/apache/cassandra.git

Because Maven takes care of all the dependencies, it’s easy to build Cassandra once
you have the source. Just make sure you’re in the root directory of your source down‐
load and execute the ant program, which will look for a file called build.xml in the
current directory and execute the default build target. Ant and Maven take care of the
rest. To execute the Ant program and start compiling the source, just type:

$ ant

That’s it. Maven will retrieve all of the necessary dependencies, and Ant will build the
hundreds of source files and execute the tests. If all went well, you should see a BUILD
SUCCESSFUL message. If all did not go well, make sure that your path settings are all
correct, that you have the most recent versions of the required programs, and that
you downloaded a stable Cassandra build. You can check the Jenkins report to make
sure that the source you downloaded actually can compile.

38 | Chapter 3: Installing Cassandra

http://ant.apache.org
https://oreil.ly/FBgt7

More Build Output

If you want to see detailed information on what is happening dur‐
ing the build, you can pass Ant the -v option to cause it to output
verbose details regarding each operation it performs.

Additional Build Targets
To compile the server, you can simply execute ant, as shown previously. This com‐
mand executes the default target, jar. This target will perform a complete build,
including unit tests, and output a file into the build directory called apache-cassandra-
x.x.x.jar.

If you want to see a list of all of the targets supported by the build file, simply pass
Ant the -p option to get a description of each target. Here are a few others you might
be interested in:

test
Users will probably find this the most helpful, as it executes the battery of unit
tests. You can also check out the unit test sources themselves for some useful
examples of how to interact with Cassandra.

stress-build
This target builds the Cassandra stress tool, which you will learn to use in Chap‐
ter 13.

clean
This target removes locally created artifacts such as generated source files and
classes and unit test results. The related target realclean performs a clean and
additionally removes the Cassandra distribution JAR files and JAR files downloa‐
ded by Maven.

Running Cassandra
The Cassandra developers have done a terrific job of making it very easy for new
users to start using Cassandra immediately, as you can start a single node without
making any changes to the default configuration. We’ll note some of the available
configuration options in Chapter 10.

Running Cassandra | 39

Required Java Version

Cassandra versions from 3.0 onward require a Java 8 JVM or later,
preferably the latest stable version. It has been tested on both the
OpenJDK and Oracle’s JDK. Cassandra 4.0 has been compiled and
tested against both Java 8 and Java 11. You can check your installed
Java version by opening a command prompt and executing java -
version. If you need a JDK, you can get one at this Java SE Down‐
loads page or the jdk.java.net page.

Setting the Environment
Once you have the binary (or the source downloaded and compiled), you’re ready to
start the database server.

Setting the JAVA_HOME environment variable is recommended. To do this on a Win‐
dows system, click the Start button and then right-click Computer. Click Advanced
System Settings, and then click the Environment Variables… button. Click New… to
create a new system variable. In the Variable Name field, type JAVA_HOME. In the Vari‐
able Value field, type the path to your Java installation. This is probably something
like C:\Program Files\Java\jre1.8.0_25 or /usr/java/jre1.8.0_.

Once you’ve started the server for the first time, Cassandra will add directories to
your system to store its datafiles. The default configuration creates directories under
the CASSANDRA_HOME directory:

data
This directory is where Cassandra stores its data. By default, there are sub-
directories under the data directory, corresponding to the various datafiles Cas‐
sandra uses: commitlog, data, hints, and saved_caches. We’ll explore the
significance of each of these datafiles in Chapter 6. If you’ve been trying different
versions of the database and aren’t worried about losing data, you can delete
these directories and restart the server as a last resort.

logs
This directory is where Cassandra stores its logs in a file called system.log. If you
encounter any difficulties, consult the log to see what might have happened.

Datafile Locations

The datafile locations are configurable in the cassandra.yaml file,
located in the conf directory. The properties are called
data_file_directories, commit_log_directory, hints_direc

tory, and saved_caches_directory. We’ll discuss the recom‐
mended configuration of these directories in Chapter 10.

40 | Chapter 3: Installing Cassandra

https://oreil.ly/tuA7P
https://oreil.ly/tuA7P
https://jdk.java.net

Many users on Unix-based systems prefer to use the /var/lib directory for data stor‐
age. If you are changing this configuration, you will need to edit the conf/cassan‐
dra.yaml file and create the referenced directories for Cassandra to store its data,
making sure to configure write permissions for the user that will be running
Cassandra:

$ sudo mkdir -p /var/lib/cassandra
$ sudo chown -R username /var/lib/cassandra

Instead of username, substitute your own username, of course.

Starting the Server
To start the Cassandra server on any OS, open a command prompt or terminal win‐
dow, navigate to the <cassandra-directory>/bin where you unpacked Cassandra, and
run the command cassandra -f to start your server.

Starting Cassandra in the Foreground

Using the -f switch tells Cassandra to stay in the foreground
instead of running as a background process, so that all of the server
logs will print to standard out (stdout in Unix systems) and you
can see them in your terminal window, which is useful for testing.
In either case, the logs will append to the system.log file.

In a clean installation, you should see quite a few log statements as the server gets
running. The exact syntax of logging statements will vary depending on the release
you’re using, but there are a few highlights you can look for. If you search for cassan
dra.yaml, you’ll quickly run into the following:

INFO [main] 2019-08-25 17:42:11,712 YamlConfigurationLoader.java:89 -
 Configuration location:
 file:/Users/jeffreycarpenter/cassandra/conf/cassandra.yaml
INFO [main] 2019-08-25 17:42:11,855 Config.java:598 - Node configuration:[
 allocate_tokens_for_keyspace=null;
 ...

These log statements indicate the location of the cassandra.yaml file containing the
configured settings. The Node configuration statement lists out the settings read
from the config file.

Now search for JVM and you’ll find something like this:

INFO [main] 2019-08-25 17:42:12,308 CassandraDaemon.java:487 -
 JVM vendor/version: OpenJDK 64-Bit Server VM/12.0.1
INFO [main] 2019-08-25 17:42:12,309 CassandraDaemon.java:488 -
 Heap size: 3.900GiB/3.900GiB

Running Cassandra | 41

These log statements provide information describing the JVM being used, including
memory settings.

Next, search for the versions in use—Cassandra version, CQL version, Native pro
tocol supported versions:

INFO [main] 2019-08-25 17:42:17,847 StorageService.java:610 -
 Cassandra version: 4.0.0
INFO [main] 2019-08-25 17:42:17,848 StorageService.java:611 -
 CQL version: 3.4.5
INFO [main] 2019-08-25 17:42:17,848 StorageService.java:612 -
 Native protocol supported versions: 3/v3, 4/v4, 5/v5-beta (default: 4/v4)

You can also find statements where Cassandra is initializing internal data structures,
such as caches:

INFO [main] 2015-12-08 06:02:43,633 CacheService.java:115 -
 Initializing key cache with capacity of 24 MBs.
INFO [main] 2015-12-08 06:02:43,679 CacheService.java:137 -
 Initializing row cache with capacity of 0 MBs
INFO [main] 2015-12-08 06:02:43,686 CacheService.java:166 -
 Initializing counter cache with capacity of 12 MBs

If you search for terms like JMX, gossip, and listening, you’ll find statements like
the following:

WARN [main] 2019-08-25 17:42:12,363 StartupChecks.java:168 -
 JMX is not enabled to receive remote connections.
 Please see cassandra-env.sh for more info.
INFO [main] 2019-08-25 17:42:18,354 StorageService.java:814 -
 Starting up server gossip
INFO [main] 2019-08-25 17:42:18,070 InboundConnectionInitiator.java:130 -
 Listening on address: (127.0.0.1:7000), nic: lo0, encryption: enabled (openssl)

These log statements indicate the server is beginning to initiate communications with
other servers in the cluster and expose publicly available interfaces. By default, the
management interface via the Java Management Extensions (JMX) is disabled for
remote access. We’ll explore the management interface in Chapter 11.

Finally, search for state jump and you’ll see the following:

INFO [main] 2019-08-25 17:42:18,581 StorageService.java:1507 -
 JOINING: Finish joining ring
INFO [main] 2019-08-25 17:42:18,591 StorageService.java:2508 -
 Node 127.0.0.1:7000 state jump to NORMAL

Congratulations! Now your Cassandra server should be up and running with a new
single-node cluster called “Test Cluster,” ready to interact with other nodes and cli‐
ents. If you continue to monitor the output, you’ll begin to see periodic output such
as memtable flushing and compaction, which you’ll learn about soon.

42 | Chapter 3: Installing Cassandra

Starting Over

The committers work hard to ensure that data is readable from one
minor dot release to the next and from one major version to the
next. The commit log, however, needs to be completely cleared out
from version to version (even minor versions).
If you have any previous versions of Cassandra installed, you may
want to clear out the data directories for now, just to get up and
running. If you’ve messed up your Cassandra installation and want
to get started cleanly again, you can delete the data folders.

Stopping Cassandra
Now that you’ve successfully started a Cassandra server, you may be wondering how
to stop it. You may have noticed the stop-server command in the bin directory. Let’s
try running that command. Here’s what you’ll see on Unix systems:

$./stop-server
please read the stop-server script before use

So you see that the server has not been stopped, but instead you are directed to read
the script. Taking a look inside with your favorite code editor, you’ll learn that the
way to stop Cassandra is to kill the JVM process that is running Cassandra. The file
suggests a couple of different techniques by which you can identify the JVM process
and kill it.

The first technique is to start Cassandra using the -p option, which provides Cassan‐
dra with the name of a file to which it should write the process identifier (PID) upon
starting up. This is arguably the most straightforward approach to making sure you
kill the right process.

However, because you did not start Cassandra with the -p option, you’ll need to find
the process yourself and kill it. The script suggests using pgrep to locate processes for
the current user containing the term “cassandra”:

user=`whoami`
pgrep -u $user -f cassandra | xargs kill −9

Stopping Cassandra on Windows

On Windows installations, you can find the JVM process and kill it
using the Task Manager.

Running Cassandra | 43

Other Cassandra Distributions
The preceding instructions showed you how to install the Apache distribution of Cas‐
sandra. In addition to the Apache distribution, there are a couple of other ways to get
Cassandra:

DataStax Enterprise Edition
DataStax provides a fully supported version certified for production use. The
product line provides an integrated database platform with support for comple‐
mentary data technologies such as Apache Solr for search, Apache Spark for ana‐
lytics, Apache TinkerPop for graph, as well as advanced security and other
enterprise features. We’ll explore some of these integrations in Chapter 15.

Virtual machine images
A frequent model for deployment of Cassandra is to package one of the preced‐
ing distributions in a virtual machine image. For example, multiple such images
are available in the Amazon Web Services (AWS) Marketplace.

Containers
It has become increasingly popular to run Cassandra in Docker containers, espe‐
cially in development environments. We’ll provide some simple instructions for
running the Apache distribution in Docker in “Running Cassandra in Docker”
on page 53.

Managed services
There are a few providers of Cassandra as a managed service, where the provider
provides hosting and management of Cassandra clusters. These include Insta‐
clustr and Aiven. DataStax provides an Apache Cassandra as a service called
Astra.

Verifying CQL Compatibility on Managed Services

Multiple public cloud providers claim to offer Cassandra support
by enabling CQL on top of their existing database service offerings.
Before migrating Cassandra workloads to these services, make sure
to check the fine print to confirm that all the features that your
workloads need are fully supported.

We’ll take a deeper look at several options for deploying Cassandra in production
environments, including Kubernetes and cloud computing environments, in Chap‐
ter 10.

Selecting the right distribution will depend on your deployment environment; your
needs for scale, stability, and support; and your development and maintenance

44 | Chapter 3: Installing Cassandra

https://www.instaclustr.com/platform/managed-apache-cassandra/
https://www.instaclustr.com/platform/managed-apache-cassandra/
https://aiven.io/cassandra
https://astra.datastax.com

budgets. Having both open source and commercial deployment options provides the
flexibility to make the right choice for your organization.

Running the CQL Shell
Now that you have a Cassandra installation up and running, let’s give it a quick try to
make sure everything is set up properly. You’ll use the CQL shell (cqlsh) to connect
to your server and have a look around.

Deprecation of the CLI

If you’ve used Cassandra in releases prior to 3.0, you may also be
familiar with the command-line client interface known as
cassandra-cli. The CLI was removed in the 3.0 release because it
depends on the legacy Thrift API, which was deprecated in 3.0 and
removed entirely in 4.0.

To run the shell, create a new terminal window, change to the Cassandra home direc‐
tory, and type the following command (you should see output similar to that shown
here):

$ bin/cqlsh
Connected to Test Cluster at 127.0.0.1:9042.
[cqlsh 6.0.0 | Cassandra 4.0.0 | CQL spec 3.4.5 | Native protocol v5]
Use HELP for help.

Because you did not specify a node to which you wanted to connect, the shell help‐
fully checks for a node running on the local host, and finds the node you started ear‐
lier. The shell also indicates that you’re connected to a Cassandra server cluster called
“Test Cluster.” That’s because this cluster of one node at localhost is set up for you
by default.

Renaming the Default Cluster

In a production environment, be sure to change the cluster name
to something more suitable to your application.

To connect to a specific node, specify the hostname and port on the command line.
For example, the following will connect to your local node:

$ bin/cqlsh localhost 9042

The port number can be omitted if the node uses the default value (9042). Another
alternative for configuring the cqlsh connection is to set the environment variables
$CQLSH_HOST and $CQLSH_PORT. This approach is useful if you will be frequently

Running the CQL Shell | 45

connecting to a specific node on another host. The environment variables will be
overriden if you specify the host and port on the command line.

Connection Errors

Have you run into an error like this while trying to connect to a
server?

Exception connecting to localhost/9042. Reason:
 Connection refused.

If so, make sure that a Cassandra instance is started at that host and
port, and that you can ping the host you’re trying to reach. There
may be firewall rules preventing you from connecting.

To see a complete list of the command-line options supported by cqlsh, type the
command cqlsh -help.

Basic cqlsh Commands
Let’s take a quick tour of cqlsh to learn what kinds of commands you can send to the
server. You’ll see how to use the basic environment commands and how to do a
round trip of inserting and retrieving some data.

Case in cqlsh

The cqlsh commands are all case insensitive. For the examples in
this book, we adopt the convention of uppercase to be consistent
with the way the shell describes its own commands in help topics
and output.

cqlsh Help
To get help for cqlsh, type HELP or ? to see the list of available commands:

cqlsh> HELP

Documented shell commands:
===========================
CAPTURE CLS COPY DESCRIBE EXPAND LOGIN SERIAL SOURCE UNICODE
CLEAR CONSISTENCY DESC EXIT HELP PAGING SHOW TRACING

CQL help topics:
================
AGGREGATES CREATE_KEYSPACE DROP_TRIGGER TEXT
ALTER_KEYSPACE CREATE_MATERIALIZED_VIEW DROP_TYPE TIME
ALTER_MATERIALIZED_VIEW CREATE_ROLE DROP_USER TIMESTAMP
ALTER_TABLE CREATE_TABLE FUNCTIONS TRUNCATE
ALTER_TYPE CREATE_TRIGGER GRANT TYPES

46 | Chapter 3: Installing Cassandra

ALTER_USER CREATE_TYPE INSERT UPDATE
APPLY CREATE_USER INSERT_JSON USE
ASCII DATE INT UUID
BATCH DELETE JSON
BEGIN DROP_AGGREGATE KEYWORDS
BLOB DROP_COLUMNFAMILY LIST_PERMISSIONS
BOOLEAN DROP_FUNCTION LIST_ROLES
COUNTER DROP_INDEX LIST_USERS
CREATE_AGGREGATE DROP_KEYSPACE PERMISSIONS
CREATE_COLUMNFAMILY DROP_MATERIALIZED_VIEW REVOKE
CREATE_FUNCTION DROP_ROLE SELECT
CREATE_INDEX DROP_TABLE SELECT_JSON

cqlsh Help Topics

You’ll notice that the help topics listed differ slightly from the
actual command syntax. The CREATE_TABLE help topic describes
how to use the syntax > CREATE TABLE …, for example.

To get additional documentation about a particular command, type HELP <command>.
Many cqlsh commands may be used with no parameters, in which case they print
out the current setting. Examples include CONSISTENCY, EXPAND, and PAGING.

Describing the Environment in cqlsh
Now that you have connected to your Cassandra instance Test Cluster, to learn more
about the cluster you’re working in, type:

cqlsh> DESCRIBE CLUSTER;
Cluster: Test Cluster
Partitioner: Murmur3Partitioner

To see which keyspaces are available in the cluster, issue this command:

cqlsh> DESCRIBE KEYSPACES;
system_traces system_auth system_distributed system_views
system_schema system system_virtual_schema

Initially this list will consist of several system keyspaces. Once you have created your
own keyspaces, they will be shown as well. The system keyspaces are managed inter‐
nally by Cassandra, and aren’t for you to put data into. In this way, these keyspaces
are similar to the master and temp databases in Microsoft SQL Server. Cassandra uses
these keyspaces to store the schema, tracing, and security information. We’ll learn
more about these keyspaces in Chapter 6.

You can use the following command to learn the client, server, and protocol versions
in use:

cqlsh> SHOW VERSION;
[cqlsh 6.0.0 | Cassandra 4.0.0 | CQL spec 3.4.5 | Native protocol v5]

Basic cqlsh Commands | 47

You may have noticed that this version info is printed out when cqlsh starts. There
are a variety of other commands with which you can experiment. For now, let’s add
some data to the database and get it back out again.

Creating a Keyspace and Table in cqlsh
A Cassandra keyspace is sort of like a relational database. It defines one or more
tables. When you start cqlsh without specifying a keyspace, the prompt will look like
this: cqlsh>, with no keyspace specified.

Now you’ll create your own keyspace so you have something to write data to. In cre‐
ating your keyspace, there are some required options. To walk through these options,
you could use the command HELP CREATE_KEYSPACE, but instead you can use the
helpful command-completion features of cqlsh. Type the following and then press
the Tab key:

cqlsh> CREATE KEYSPACE my_keyspace WITH

When you press the Tab key, cqlsh begins completing the syntax of your command:

cqlsh> CREATE KEYSPACE my_keyspace WITH replication = {'class': '

This is informing you that in order to specify a keyspace, you also need to specify a
replication strategy. Tab again to see what options you have:

cqlsh> CREATE KEYSPACE my_keyspace WITH replication = {'class': '
NetworkTopologyStrategy OldNetworkTopologyStrategy SimpleStrategy

Now cqlsh is giving you three strategies to choose from. You’ll learn more about
these strategies in Chapter 6. For now, choose the SimpleStrategy by typing the
name, and indicate you’re done with a closing quote and Tab again:

cqlsh> CREATE KEYSPACE my_keyspace WITH replication = {'class':
 'SimpleStrategy', 'replication_factor':

The next option you’re presented with is a replication factor. For the simple strategy,
this indicates how many nodes the data in this keyspace will be written to. For a pro‐
duction deployment, you’ll want copies of your data stored on multiple nodes, but
because you’re just running a single node at the moment, you’ll ask for a single copy.
Specify a value of “1” and a space and Tab again:

cqlsh> CREATE KEYSPACE my_keyspace WITH replication = {'class':
 'SimpleStrategy', 'replication_factor': 1};

You see that cqlsh has now added a closing bracket, indicating you’ve completed all
of the required options. Complete the command with a semicolon and return, and
your keyspace will be created.

48 | Chapter 3: Installing Cassandra

Keyspace Creation Options

For a production keyspace, you would probably never want to use a
value of 1 for the replication factor. There are additional options on
creating a keyspace depending on the replication strategy that is
chosen. The command completion feature will walk through the
different options.

Have a look at your keyspace using the DESCRIBE KEYSPACE command:

cqlsh> DESCRIBE KEYSPACE my_keyspace
CREATE KEYSPACE my_keyspace WITH replication = {'class':
 'SimpleStrategy', 'replication_factor': '1'} AND
 durable_writes = true;

We see that the table has been created with the SimpleStrategy, a replication_fac
tor of one, and durable writes. Notice that your keyspace is described in much the
same syntax that we used to create it, with one additional option that we did not spec‐
ify: durable_writes = true. Don’t worry about this option now; we’ll return to it in
Chapter 6.

After you have created your own keyspace, you can switch to it in the shell by typing:

cqlsh> USE my_keyspace;
cqlsh:my_keyspace>

Notice that the prompt has changed to indicate that we’re using the keyspace.

Using Snake Case
You may have wondered why we directed you to name your keyspace in “snake case”
(my_keyspace) as opposed to “camel case” (MyKeyspace), which is familiar to develop‐
ers using Java and other languages.

As it turns out, Cassandra naturally handles keyspace, table, and column names as
lowercase. When you enter names in mixed case, Cassandra stores them as all
lowercase.

This behavior can be overridden by enclosing your names in double quotes (e.g., CRE
ATE KEYSPACE "MyKeyspace"). However, it tends to be a lot simpler to use snake case
than to go against the grain.

Now that you have a keyspace, you can create a table in your keyspace. To do this in
cqlsh, use the following command:

cqlsh:my_keyspace> CREATE TABLE user (first_name text ,
 last_name text, title text, PRIMARY KEY (last_name, first_name)) ;

Basic cqlsh Commands | 49

This creates a new table called “user” in your current keyspace with three columns to
store first and last names and a title, all of type text. The text and varchar types are
synonymous and are used to store strings. You’ve specified a primary key for this
table consisting of the first_name and last_name and taken the defaults for other
table options. You’ll learn more about primary keys and the significance of your
choice of primary key in Chapter 4, but for now let’s think of that combination of
names as identifying unique rows in your table. The title column is the only one in
your table that is not part of the primary key.

Using Keyspace Names in cqlsh

You could have also created this table without switching to your
keyspace by using the syntax CREATE TABLE my_keyspace.user.

You can use cqlsh to get a description of a the table you just created using the
DESCRIBE TABLE command:

cqlsh:my_keyspace> DESCRIBE TABLE user;
CREATE TABLE my_keyspace.user (
 first_name text,
 last_name text,
 title text,
 PRIMARY KEY (last_name, first_name)
) WITH bloom_filter_fp_chance = 0.01
 AND caching = {'keys': 'ALL', 'rows_per_partition': 'NONE'}
 AND comment = ''
 AND compaction = {'class': 'org.apache.cassandra.db.compaction.
 SizeTieredCompactionStrategy', 'max_threshold': '32',
 'min_threshold': '4'}
 AND compression = {'chunk_length_in_kb': '16', 'class':
 'org.apache.cassandra.io.compress.LZ4Compressor'}
 AND crc_check_chance = 1.0
 AND dclocal_read_repair_chance = 0.0
 AND default_time_to_live = 0
 AND gc_grace_seconds = 864000
 AND max_index_interval = 2048
 AND memtable_flush_period_in_ms = 0
 AND min_index_interval = 128
 AND read_repair_chance = 0.0
 AND speculative_retry = '99p';

You’ll notice that cqlsh prints a nicely formatted version of the CREATE TABLE com‐
mand that you just typed in but also includes default values for all of the available
table options that you did not specify. We’ll describe these settings later. For now, you
have enough to get started.

50 | Chapter 3: Installing Cassandra

Writing and Reading Data in cqlsh
Now that you have a keyspace and a table, you can write some data to the database
and read it back out again. It’s OK at this point not to know quite what’s going on.
You’ll come to understand Cassandra’s data model in depth later. For now, you have a
keyspace (database), which has a table, which holds columns, the atomic unit of data
storage.

To write rows, you use the INSERT command:

cqlsh:my_keyspace> INSERT INTO user (first_name, last_name, title)
 VALUES ('Bill', 'Nguyen', 'Mr.');

Here you have created a new row with two columns for the key Bill, to store a set of
related values. The column names are first_name and last_name.

Now that you have written some data, you can read it back using the SELECT
command:

cqlsh:my_keyspace> SELECT * FROM user WHERE first_name='Bill' AND
 last_name='Nguyen';

 last_name | first_name | title
-----------+------------+-------
 Nguyen | Bill | Mr.

(1 rows)

In this command, you requested to return rows matching the primary key including
all columns. For this query, you specified both of the columns referenced by the pri‐
mary key. What happens when you only specify one of the values? Let’s find out:

cqlsh:my_keyspace> SELECT * FROM user where last_name = 'Nguyen';

 last_name | first_name | title
-----------+------------+-------
 Nguyen | Bill | Mr.

(1 rows)
cqlsh:my_keyspace> SELECT * FROM user where first_name = 'Bill';
InvalidRequest: Error from server: code=2200 [Invalid query]
message="Cannot execute this query as it might involve data
filtering and thus may have unpredictable performance.
If you want to execute this query despite the
performance unpredictability, use ALLOW FILTERING"

This behavior might not seem intuitive at first, but it has to do with the composition
of the primary key you used for this table. This is your first clue that there might be
something a bit different about accessing data in Cassandra as compared to what you
might be used to in SQL. We’ll explain the significance of your primary key selection
and the ALLOW FILTERING option in Chapter 4 and other chapters.

Basic cqlsh Commands | 51

Counting Data and Full Table Scans

Many new Cassandra users, especially those who are coming from
a relational background, will be inclined to use the SELECT COUNT
command as a way to ensure data has been written. For example,
you could use the following command to verify your write to the
user table:

cqlsh:my_keyspace> SELECT COUNT (*) FROM user;
 count

 1

(1 rows)

Warnings :
Aggregation query used without partition key

Note that when you execute this command, cqlsh gives you the
correct count of rows, but also gives you a warning. This is because
you’ve asked Cassandra to perform a full table scan. In a multi-
node cluster with potentially large amounts of data, this COUNT
could be a very expensive operation. Throughout the rest of the
book, you’ll encounter various ways in which Cassandra tries to
warn you or constrain your ability to perform operations that will
perform poorly at scale in a distributed architecture.

You can delete a column using the DELETE command. Here you will delete the title
column from the row inserted previously:

 cqlsh:my_keyspace> DELETE title FROM USER WHERE
 first_name='Bill' AND last_name='Nguyen';

You can perform this delete because the title column is not part of the primary key.
To make sure that the value has been removed, you can query again:

cqlsh:my_keyspace> SELECT * FROM user WHERE first_name='Bill'
 AND last_name='Nguyen';

 last_name | first_name | title
-----------+------------+-------
 Nguyen | Bill | null

(1 rows)

Now you’ll clean up after yourself by deleting the entire row. It’s the same command,
but you don’t specify a column name:

cqlsh:my_keyspace> DELETE FROM USER WHERE first_name='Bill'
 AND last_name='Nguyen';

To make sure that it’s removed, you can query again:

52 | Chapter 3: Installing Cassandra

cqlsh:my_keyspace> SELECT * FROM user WHERE first_name='Bill'
 AND last_name='Nguyen';

 last_name | first_name | title
-----------+------------+-------

(0 rows)

If you really want to clean things up, you can remove all data from the table using the
TRUNCATE command, or even delete the table schema using the DROP TABLE

command:

cqlsh:my_keyspace> TRUNCATE user;
cqlsh:my_keyspace> DROP TABLE user;

cqlsh Command History

Now that you’ve been using cqlsh for a while, you may have
noticed that you can navigate through commands you’ve executed
previously with the up and down arrow keys. This history is stored
in a file called cqlsh_history, which is located in a hidden directory
called .cassandra within your home directory. This acts like your
bash shell history, listing the commands in a plain-text file in the
order Cassandra executed them. Nice!

Running Cassandra in Docker
Over the past few years, containers have become a very popular alternative to full
machine virtualization for deployment of applications and supporting infrastructure
such as databases.

Given the high popularity of Docker and its image format, the Apache project has
begun supporting official Docker images of Cassandra.

If you have a Docker environment installed on your machine, it’s extremely simple to
start a Cassandra node. After making sure you’ve stopped any Cassandra node started
previously, start a new node in Docker using the following two commands:

$ docker pull cassandra
$ docker run --name my-cassandra cassandra

The first command pulls the Docker image marked with the tag latest from the
Docker Hub https://hub.docker.com/_/cassandra/:

Using default tag: latest
latest: Pulling from library/cassandra
9fc222b64b0a: Pull complete
33b9abeacd73: Pull complete
d28230b01bc3: Pull complete
6e755ec31928: Pull complete

Running Cassandra in Docker | 53

https://hub.docker.com/_/cassandra/:

b881e4d8c78e: Pull complete
d8b058ab9240: Pull complete
3ddfff7126ed: Pull complete
94de8e3674c4: Pull complete
61d4f90c97c4: Pull complete
a3d009e31ea4: Pull complete
Digest: sha256:0f188d784235e1bedf191361096e6eeab330f9579eac7d2e68e14a5c29f75ad6
Status: Downloaded newer image for cassandra:latest
docker.io/library/cassandra:latest

The second command starts an instance of Cassandra with default options. Note that
you could have used the -d option to start the container in the background without
printing out the logs.

You used the --name option to specify a name for the container, which allows you to
reference the container by name when using other Docker commands. For example,
you can stop the container by using the command:

$ docker stop my-cassandra

If you don’t provide a name for the container, the Docker runtime will assign a ran‐
domly selected name such as breezy_ensign. Docker also creates a unique identifier
for each container, which is returned from the initial run command. Either the name
or ID may be used to reference a specific container in Docker commands.

If you’d like to start an instance of cqlsh, the simplest way is to use the copy inside
the instance by executing a command on the instance:

$ docker exec -it my-cassandra cqlsh

This will give you a cqlsh prompt, with which you could execute the same com‐
mands you’ve practiced in this chapter, or any other commands you’d like.

Up to this point, you’ve only created a single Cassandra node in Docker, which is not
accessible from outside Docker’s internal network. In order to access this node from
outside Docker for CQL queries, you’ll want to make sure the standard CQL port is
exposed when the node is created:

$ docker start cassandra -p 9042:9042

There are several other configuration options available for running Cassandra in
Docker, documented on the Docker Hub page referenced earlier. One exercise you
may find interesting is to launch multiple nodes in Docker to create a small cluster.

Summary
Now you should have a Cassandra installation up and running. You’ve worked with
the cqlsh client to insert and retrieve some data, and you’re ready to take a step back
and get the big picture on Cassandra before really diving into the details.

54 | Chapter 3: Installing Cassandra

CHAPTER 4

The Cassandra Query Language

In this chapter, you’ll gain an understanding of Cassandra’s data model and how that
data model is implemented by the Cassandra Query Language (CQL). We’ll show
how CQL supports Cassandra’s design goals and look at some general behavior
characteristics.

For developers and administrators coming from the relational world, the Cassandra
data model can be difficult to understand initially. Some terms, such as keyspace, are
completely new, and some, such as column, exist in both worlds but have slightly dif‐
ferent meanings. The syntax of CQL is similar in many ways to SQL, but with some
important differences. For those familiar with NoSQL technologies such as Dynamo
or Bigtable, it can also be confusing, because although Cassandra may be based on
those technologies, its own data model is significantly different.

So in this chapter, we start from relational database terminology and introduce Cas‐
sandra’s view of the world. Along the way you’ll get more familiar with CQL and learn
how it implements this data model.

The Relational Data Model
In a relational database, the database itself is the outermost container that might cor‐
respond to a single application. The database contains tables. Tables have names and
contain one or more columns, which also have names. When you add data to a table,
you specify a value for every column defined; if you don’t have a value for a particular
column, you use null. This new entry adds a row to the table, which you can later
read if you know the row’s unique identifier (primary key), or by using a SQL state‐
ment that expresses some criteria that row might meet. If you want to update values
in the table, you can update all of the rows or just some of them, depending on the
filter you use in a “where” clause of your SQL statement.

55

After this review, you’re in good shape to look at Cassandra’s data model in terms of
its similarities and differences.

Cassandra’s Data Model
In this section, we’ll take a bottom-up approach to understanding Cassandra’s data
model.

The simplest data store you would conceivably want to work with might be an array
or list. It would look like Figure 4-1.

Figure 4-1. A list of values

If you persisted this list, you could query it later, but you would have to either exam‐
ine each value in order to know what it represented, or always store each value in the
same place in the list and then externally maintain documentation about which cell in
the array holds which values. That would mean you might have to supply empty
placeholder values (nulls) in order to keep the predetermined size of the array in case
you didn’t have a value for an optional attribute (such as a fax number or apartment
number). An array is a clearly useful data structure, but not semantically rich.

Now let’s add a second dimension to this list: names to match the values. Give names
to each cell, and now you have a map structure, as shown in Figure 4-2.

Figure 4-2. A map of name/value pairs

This is an improvement because you can know the names of your values. So if you
decided that your map would hold user information, you could have column names
like first_name, last_name, phone, email, and so on. This is a somewhat richer
structure to work with.

But the structure you’ve built so far works only if you have one instance of a given
entity, such as a single person, user, hotel, or tweet. It doesn’t give you much if you
want to store multiple entities with the same structure, which is certainly what you
want to do. There’s nothing to unify some collection of name/value pairs, and no way

56 | Chapter 4: The Cassandra Query Language

to repeat the same column names. So you need something that will group some of the
column values together in a distinctly addressable group. You need a key to reference
a group of columns that should be treated together as a set. You need rows. Then, if
you get a single row, you can get all of the name/value pairs for a single entity at once,
or just get the values for the names you’re interested in. You could call these name/
value pairs columns. You could call each separate entity that holds some set of col‐
umns rows. And the unique identifier for each row could be called a row key or pri‐
mary key. Figure 4-3 shows the contents of a simple row: a primary key, which is itself
one or more columns, and additional columns. Let’s come back to the primary key
shortly.

Figure 4-3. A Cassandra row

Cassandra defines a table to be a logical division that associates similar data. For
example, you might have a user table, a hotel table, an address book table, and so
on. In this way, a Cassandra table is analogous to a table in the relational world.

You don’t need to store a value for every column every time you store a new entity.
Maybe you don’t know the values for every column for a given entity. For example,
some people have a second phone number and some don’t, and in an online form
backed by Cassandra, there may be some fields that are optional and some that are
required. That’s OK. Instead of storing null for those values you don’t know, which
would waste space, you just don’t store that column at all for that row. So now you
have a sparse, multidimensional array structure that looks like Figure 4-4. This flexi‐
ble data structure is characteristic of Cassandra and other databases classified as wide
column stores.

Now let’s return to the discussion of primary keys in Cassandra, as this is a funda‐
mental topic that will affect your understanding of Cassandra’s architecture and data
model, how Cassandra reads and writes data, and how it is able to scale.

Cassandra uses a special type of primary key called a composite key (or compound
key) to represent groups of related rows, also called partitions. The composite key
consists of a partition key, plus an optional set of clustering columns. The partition key
is used to determine the nodes on which rows are stored and can itself consist of mul‐
tiple columns. The clustering columns are used to control how data is sorted for

Cassandra’s Data Model | 57

storage within a partition. Cassandra also supports an additional construct called a
static column, which is for storing data that is not part of the primary key but is
shared by every row in a partition.

Figure 4-4. A Cassandra table

Figure 4-5 shows how each partition is uniquely identified by a partition key, and
how the clustering keys are used to uniquely identify the rows within a partition.
Note that in the case where no clustering columns are provided, each partition con‐
sists of a single row.

Figure 4-5. A Cassandra table with partitions

58 | Chapter 4: The Cassandra Query Language

Putting these concepts all together, we have the basic Cassandra data structures:

• The column, which is a name/value pair
• The row, which is a container for columns referenced by a primary key
• The partition, which is a group of related rows that are stored together on the

same nodes
• The table, which is a container for rows organized by partitions
• The keyspace, which is a container for tables
• The cluster, which is a container for keyspaces that spans one or more nodes

So that’s the bottom-up approach to looking at Cassandra’s data model. Now that you
know the basic terminology, let’s examine each structure in more detail.

Clusters
As previously mentioned, the Cassandra database is specifically designed to be dis‐
tributed over several machines operating together that appear as a single instance to
the end user. So the outermost structure in Cassandra is the cluster, sometimes called
the ring, because Cassandra assigns data to nodes in the cluster by arranging them in
a ring.

Keyspaces
A cluster is a container for keyspaces. A keyspace is the outermost container for data
in Cassandra, corresponding closely to a database in the relational model. In the same
way that a database is a container for tables in the relational model, a keyspace is a
container for tables in the Cassandra data model. Like a relational database, a key‐
space has a name and a set of attributes that define keyspace-wide behavior such as
replication.

Because we’re currently focusing on the data model, we’ll leave questions about set‐
ting up and configuring clusters and keyspaces until later. We’ll examine these topics
in Chapter 10.

Tables
A table is a container for an ordered collection of rows, each of which is itself an
ordered collection of columns. Rows are organized in partitions and assigned to
nodes in a Cassandra cluster according to the column(s) designated as the partition
key. The ordering of data within a partition is determined by the clustering columns.

When you write data to a table in Cassandra, you specify values for one or more col‐
umns. That collection of values is called a row. You must specify a value for each of

Cassandra’s Data Model | 59

the columns contained in the primary key as those columns taken together will
uniquely identify the row.

Let’s go back to the user table from the previous chapter. Remember how you wrote a
row of data and then read it using the SELECT command in cqlsh:

cqlsh:my_keyspace> SELECT * FROM user where last_name = 'Nguyen';

 last_name | first_name | title
-----------+------------+-------
 Nguyen | Bill | Mr.

(1 rows)

You’ll notice in the last line of output that one row was returned. It turns out to be the
row identified by the last_name “Nguyen” and first_name “Bill.” This is the primary
key that uniquely identifies this row.

One interesting point about the preceding query is that it is only specifying the parti‐
tion key, which makes it a query that could potentially return multiple rows. To illus‐
trate this point, let’s add another user with the same last_name and then repeat the
SELECT command from above:

cqlsh:my_keyspace> INSERT INTO user (first_name, last_name, title)
 VALUES ('Wanda', 'Nguyen', 'Mrs.');
cqlsh:my_keyspace> SELECT * FROM user WHERE last_name='Nguyen';

 last_name | first_name | title
-----------+------------+-------
 Nguyen | Bill | Mr.
 Nguyen | Wanda | Mrs.

(2 rows)

As you can see, by partitioning users by last_name, you’ve made it possible to load
the entire partition in a single query by providing that last_name. To access just one
single row, you’d need to specify the entire primary key:

cqlsh:my_keyspace> SELECT * FROM user WHERE last_name='Nguyen' AND
 first_name='Bill';

 last_name | first_name | title
-----------+------------+-------
 Nguyen | Bill | Mr.

(1 rows)

60 | Chapter 4: The Cassandra Query Language

Data Access Requires a Primary Key

To summmarize this important detail: the SELECT, INSERT, UPDATE,
and DELETE commands in CQL all operate in terms of rows. For
INSERT and UPDATE commands, all of the primary key columns
must be specified using the WHERE clause in order to identify the
specific row that is affected. The SELECT and DELETE commands
can operate in terms of one or more rows within a partition, an
entire partition, or even multiple partitions by using the WHERE and
IN clauses. We’ll explore these commands in more detail in Chap‐
ter 9.

While you do need to provide a value for each primary key column when you add a
new row to the table, you are not required to provide values for nonprimary key col‐
umns. To illustrate this, let’s insert another row with no title:

cqlsh:my_keyspace> INSERT INTO user (first_name, last_name)
 ... VALUES ('Mary', 'Rodriguez');
cqlsh:my_keyspace> SELECT * FROM user WHERE last_name='Rodriguez';

 last_name | first_name | title
-----------+------------+-------
 Rodriguez | Mary | null

(1 rows)

Since you have not set a value for title, the value returned is null.

Now if you decide later that you would also like to keep track of users’ middle initials,
you can modify the user table using the ALTER TABLE command and then view the
results using the DESCRIBE TABLE command:

cqlsh:my_keyspace> ALTER TABLE user ADD middle_initial text;
cqlsh:my_keyspace> DESCRIBE TABLE user;

CREATE TABLE my_keyspace.user (
 last_name text,
 first_name text,
 middle_initial text,
 title text,
 PRIMARY KEY (last_name, first_name)
) ...

You see that the middle_initial column has been added. Note that we’ve shortened
the output to omit the various table settings. You’ll learn more about these settings
and how to configure them throughout the rest of the book.

Now, let’s write some additional rows, populate different columns for each, and read
the results:

Cassandra’s Data Model | 61

cqlsh:my_keyspace> INSERT INTO user (first_name, middle_initial, last_name,
 title)
 VALUES ('Bill', 'S', 'Nguyen', 'Mr.');
cqlsh:my_keyspace> INSERT INTO user (first_name, middle_initial, last_name,
 title)
 VALUES ('Bill', 'R', 'Nguyen', 'Mr.');
cqlsh:my_keyspace> SELECT * FROM user WHERE first_name='Bill' AND
 last_name='Nguyen';

 last_name | first_name | middle_initial | title
-----------+------------+----------------+-------
 Nguyen | Bill | R | Mr.

(1 rows)

Was this the result that you expected? If you’re following closely, you may have
noticed that both of the INSERT statements here specify a previous row uniquely iden‐
tified by the primary key columns first_name and last_name. As a result, Cassandra
has faithfully updated the row you indicated, and your SELECT will only return the
single row that matches that primary key. The two INSERT statements have only
served to first set and then overwrite the middle_initial.

Insert, Update, and Upsert

Because Cassandra uses an append model, there is no fundamental
difference between the insert and update operations. If you insert a
row that has the same primary key as an existing row, the row is
replaced. If you update a row and the primary key does not exist,
Cassandra creates it.
For this reason, it is often said that Cassandra supports upsert,
meaning that inserts and updates are treated the same, with one
minor exception that we’ll discuss in “Lightweight Transactions” on
page 193.

Let’s visualize the data you’ve inserted up to this point in Figure 4-6. Notice that there
are two partitions, identified by the last_name values of “Nguyen” and “Rodriguez.”
The “Nguyen” partition contains the two rows, “Bill” and “Wanda,” and the row for
“Bill” contains values in the title and middle_initial columns, while “Wanda” has
only a title and no middle_initial specified.

62 | Chapter 4: The Cassandra Query Language

Figure 4-6. Data inserted into the user table

Now that you’ve learned more about the structure of a table and done some data
modeling, let’s dive deeper into columns.

Columns
A column is the most basic unit of data structure in the Cassandra data model. So far
you’ve seen that a column contains a name and a value. You constrain each of the val‐
ues to be of a particular type when you define the column. You’ll want to dig into the
various types that are available for each column, but first let’s take a look into some
other attributes of a column that we haven’t discussed yet: timestamps and time to
live. These attributes are key to understanding how Cassandra uses time to keep data
current.

Timestamps
Each time you write data into Cassandra, a timestamp, in microseconds, is generated
for each column value that is inserted or updated. Internally, Cassandra uses these
timestamps for resolving any conflicting changes that are made to the same value, in
what is frequently referred to as a last write wins approach.

Let’s view the timestamps that were generated for previous writes by adding the write
time() function to the SELECT command for the title column, plus a couple of
other values for context:

cqlsh:my_keyspace> SELECT first_name, last_name, title, writetime(title)
 FROM user;

 first_name | last_name | title | writetime(title)
------------+-----------+-------+------------------
 Mary | Rodriguez | null | null

Cassandra’s Data Model | 63

 Bill | Nguyen | Mr. | 1567876680189474
 Wanda | Nguyen | Mrs. | 1567874109804754

(3 rows)

As you might expect, there is no timestamp for a column that has not been set. You
might expect that if you ask for the timestamp on first_name or last_name, you’d get
a similar result to the values obtained for the title column. However, it turns out
you’re not allowed to ask for the timestamp on primary key columns:

cqlsh:my_keyspace> SELECT WRITETIME(first_name) FROM user;
InvalidRequest: code=2200 [Invalid query] message="Cannot use
 selection function writeTime on PRIMARY KEY part first_name"

Cassandra also allows you to specify a timestamp you want to use when performing
writes. To do this, you’ll use the CQL UPDATE command for the first time. Use the
optional USING TIMESTAMP option to manually set a timestamp (note that the time‐
stamp must be later than the one from your SELECT command, or the UPDATE will be
ignored):

cqlsh:my_keyspace> UPDATE user USING TIMESTAMP 1567886623298243
 SET middle_initial = 'Q' WHERE first_name = 'Mary' AND last_name = 'Rodriguez';
cqlsh:my_keyspace> SELECT first_name, middle_initial, last_name,
 WRITETIME(middle_initial) FROM user WHERE first_name = 'Mary' AND
 last_name = 'Rodriguez';

 first_name | middle_initial | last_name | writetime(middle_initial)
------------+----------------+-----------+---------------------------
 Mary | Q | Rodriguez | 1567886623298243

(1 rows)

This statement has the effect of adding the middle_initial column and setting the
timestamp to the value you provided.

Working with Timestamps

Setting the timestamp is not required for writes. This functionality
is typically used for writes in which there is a concern that some of
the writes may cause fresh data to be overwritten with stale data.
This is advanced behavior and should be used with caution.
There is currently not a way to convert timestamps produced by
writetime() into a more friendly format in cqlsh.

64 | Chapter 4: The Cassandra Query Language

Time to live (TTL)
One very powerful feature that Cassandra provides is the ability to expire data that is
no longer needed. This expiration is very flexible and works at the level of individual
column values. The time to live (or TTL) is a value that Cassandra stores for each
column value to indicate how long to keep the value.

The TTL value defaults to null, meaning that data that is written will not expire. Let’s
show this by adding the TTL() function to a SELECT command in cqlsh to see the
TTL value for Mary’s title:

cqlsh:my_keyspace> SELECT first_name, last_name, TTL(title)
 FROM user WHERE first_name = 'Mary' AND last_name = 'Rodriguez';

 first_name | last_name | ttl(title)
------------+-----------+------------
 Mary | Rodriguez | null

(1 rows)

Now let’s set the TTL on the middle_initial column to an hour (3,600 seconds) by
adding the USING TTL option to your UPDATE command:

cqlsh:my_keyspace> UPDATE user USING TTL 3600 SET middle_initial =
 'Z' WHERE first_name = 'Mary' AND last_name = 'Rodriguez';
cqlsh:my_keyspace> SELECT first_name, middle_initial,
 last_name, TTL(middle_initial)
 FROM user WHERE first_name = 'Mary' AND last_name = 'Rodriguez';

 first_name | middle_initial | last_name | ttl(middle_initial)
------------+----------------+-----------+---------------------
 Mary | Z | Rodriguez | 3574

(1 rows)

As you can see, the clock is already counting down your TTL, reflecting the several
seconds it took to type the second command. If you run this command again
in an hour, Mary’s middle_initial will be shown as null. You can also set
TTL on INSERTS using the same USING TTL option, in which case the entire row will
expire.

You can try inserting a row using TTL of 60 seconds and check that the row is ini‐
tially there:

cqlsh:my_keyspace> INSERT INTO user (first_name, last_name)
 VALUES ('Jeff', 'Carpenter') USING TTL 60;
cqlsh:my_keyspace> SELECT * FROM user WHERE first_name='Jeff' AND
 last_name='Carpenter';

 last_name | first_name | middle_initial | title
-----------+------------+----------------+-------

Cassandra’s Data Model | 65

 Carpenter | Jeff | null | null

(1 rows)

After you wait a minute, the row is no longer there:

cqlsh:my_keyspace> SELECT * FROM user WHERE first_name='Jeff' AND
 last_name='Carpenter';

 last_name | first_name | middle_initial | title
-----------+------------+----------------+-------

(0 rows)

Using TTL

Remember that TTL is stored on a per-column level for nonpri‐
mary key columns. There is currently no mechanism for setting
TTL at a row level directly after the initial insert; you would instead
need to reinsert the row, taking advantage of Cassandra’s upsert
behavior. As with the timestamp, there is no way to obtain or set
the TTL value of a primary key column, and the TTL can only be
set for a column when you provide a value for the column.

The behavior of Cassandra’s TTL feature can be somewhat nonintuitive, especially in
cases where you are updating an existing row. Rahul Kumar’s blog “Cassandra TTL
intricacies and usage by examples” does a great job of summarizing the effects of TTL
in a number of different cases.

CQL Types
Now that we’ve taken a deeper dive into how Cassandra represents columns, includ‐
ing time-based metadata, let’s look at the various types that are available to you for
representing values.

As you’ve seen previously, each column in a table is of a specified type. Up until this
point, you’ve only used the varchar type, but there are plenty of other options avail‐
able in CQL, so let’s explore them.

CQL supports a flexible set of data types, including simple character and numeric
types, collections, and user-defined types. We’ll describe these data types and provide
some examples of how they might be used to help you learn to make the right choice
for your data model.

66 | Chapter 4: The Cassandra Query Language

https://oreil.ly/BVZLM
https://oreil.ly/BVZLM

Numeric Data Types
CQL supports the numeric types you’d expect, including integer and floating-point
numbers. These types are similar to standard types in Java and other languages:

int

A 32-bit signed integer (as in Java)

bigint

A 64-bit signed long integer (equivalent to a Java long)

smallint

A 16-bit signed integer (equivalent to a Java short)

tinyint

An 8-bit signed integer (as in Java)

varint

A variable precision signed integer (equivalent to java.math.BigInteger)

float

A 32-bit IEEE-754 floating point (as in Java)

double

A 64-bit IEEE-754 floating point (as in Java)

decimal

A variable precision decimal (equivalent to java.math.BigDecimal)

Additional Integer Types

The smallint and tinyint types were added in the Cassandra 2.2
release.

While enumerated types are common in many languages, there is no direct equiva‐
lent in CQL. A common practice is to store enumerated values as strings. For exam‐
ple, in Java you might use the Enum.name() method to convert an enumerated value
to a String for writing to Cassandra as text, and the Enum.valueOf() method to con‐
vert from text back to the enumerated value.

Textual Data Types
CQL provides two data types for representing text, one of which you’ve made quite a
bit of use of already (text):

CQL Types | 67

text, varchar

Synonyms for a UTF-8 character string

ascii

An ASCII character string

UTF-8 is the more recent and widely used text standard and supports internationali‐
zation, so we recommend using text over ascii when building tables for new data.
The ascii type is most useful if you are dealing with legacy data that is in ASCII
format.

Setting the Locale in cqlsh

By default, cqlsh prints out control and other unprintable charac‐
ters using a backslash escape. You can control how cqlsh displays
non-ASCII characters by setting the locale with the $LANG environ‐
ment variable before running the tool. See the cqlsh command
HELP TEXT_OUTPUT for more information.

Time and Identity Data Types
The identity of data elements such as rows and partitions is important in any data
model in order to be able to access the data. Cassandra provides several types that
prove quite useful in defining unique partition keys. Let’s take some time (pun
intended) to dig into these:

timestamp

While we noted earlier that each column has a timestamp indicating when it was
last modified, you can also use a timestamp as the value of a column itself. The
time can be encoded as a 64-bit signed integer, but it is typically much more use‐
ful to input a timestamp using one of several supported ISO 8601 date formats.
For example:

2015-06-15 20:05-0700
 2015-06-15 20:05:07-0700
 2015-06-15 20:05:07.013-0700
 2015-06-15T20:05-0700
 2015-06-15T20:05:07-0700
 2015-06-15T20:05:07.013+-0700

The best practice is to always provide time zones rather than relying on the oper‐
ating system time zone configuration.

date, time

Releases through Cassandra 2.1 only had the timestamp type to represent times,
which included both a date and a time of day. The 2.2 release introduced date

68 | Chapter 4: The Cassandra Query Language

and time types that allowed these to be represented independently; that is, a date
without a time, and a time of day without reference to a specific date. As with
timestamp, these types support ISO 8601 formats.

Although there are new java.time types available in Java 8, the date type maps
to a custom type in Cassandra in order to preserve compatibility with older
JDKs. The time type maps to a Java long representing the number of nanosec‐
onds since midnight.

uuid

A universally unique identifier (UUID) is a 128-bit value in which the bits con‐
form to one of several types, of which the most commonly used are known as
Type 1 and Type 4. The CQL uuid type is a Type 4 UUID, which is based entirely
on random numbers. UUIDs are typically represented as dash-separated sequen‐
ces of hex digits. For example:

1a6300ca-0572-4736-a393-c0b7229e193e

The uuid type is often used as a surrogate key, either by itself or in combination
with other values.

Because UUIDs are of a finite length, they are not absolutely guaranteed to be
unique. However, most operating systems and programming languages provide
utilities to generate IDs that provide adequate uniqueness. You can also obtain a
Type 4 UUID value via the CQL uuid() function and use this value in an INSERT
or UPDATE.

timeuuid

This is a Type 1 UUID, which is based on the MAC address of the computer, the
system time, and a sequence number used to prevent duplicates. This type is fre‐
quently used as a conflict-free timestamp. CQL provides several convenience
functions for interacting with the timeuuid type: now(), dateOf(), and unixTi
mestampOf().

The availability of these convenience functions is one reason why timeuuid tends
to be used more frequently than uuid.

Building on the previous examples, you might determine that you’d like to assign a
unique ID to each user, as first_name is perhaps not a sufficiently unique key for the
user table. After all, it’s very likely that you’ll run into users with the same first name
at some point. If you were starting from scratch, you might have chosen to make this
identifier your primary key, but for now you’ll add it as another column.

CQL Types | 69

Primary Keys Are Forever

After you create a table, there is no way to modify the primary key,
because this controls how data is distributed within the cluster, and
even more importantly, how it is stored on disk.

Let’s add the identifier using a uuid:

cqlsh:my_keyspace> ALTER TABLE user ADD id uuid;

Next, insert an ID for Mary using the uuid() function and then view the results:

cqlsh:my_keyspace> UPDATE user SET id = uuid() WHERE first_name =
 'Mary' AND last_name = 'Rodriguez';
cqlsh:my_keyspace> SELECT first_name, id FROM user WHERE
 first_name = 'Mary' AND last_name = 'Rodriguez';

 first_name | id
------------+--------------------------------------
 Mary | ebf87fee-b372-4104-8a22-00c1252e3e05

(1 rows)

Notice that the id is in UUID format.

Now you have a more robust table design, which you can extend with even more col‐
umns as you learn about more types.

Other Simple Data Types
CQL provides several other simple data types that don’t fall nicely into one of the pre‐
ceding categories:

boolean

This is a simple true/false value. The cqlsh is case insensitive in accepting these
values but outputs True or False.

blob

A binary large object (blob) is a colloquial computing term for an arbitrary array
of bytes. The CQL blob type is useful for storing media or other binary file types.
Cassandra does not validate or examine the bytes in a blob. CQL represents the
data as hexadecimal digits—for example, 0x00000ab83cf0. If you want to encode
arbitrary textual data into the blob, you can use the textAsBlob() function in
order to specify values for entry. See the cqlsh help function HELP BLOB_INPUT
for more information.

inet

This type represents IPv4 or IPv6 internet addresses. cqlsh accepts any legal for‐
mat for defining IPv4 addresses, including dotted or nondotted representations

70 | Chapter 4: The Cassandra Query Language

containing decimal, octal, or hexadecimal values. However, the values are repre‐
sented using the dotted decimal format in cqlsh output—for example,
192.0.2.235.

IPv6 addresses are represented as eight groups of four hexadecimal digits, separa‐
ted by colons—for example, 2001:0db8:85a3:0000:0000:8a2e:0370:7334. The
IPv6 specification allows the collapsing of consecutive zero hex values, so the
preceding value is rendered as follows when read using SELECT: 2001:

db8:85a3:a::8a2e:370:7334.

counter

The counter data type provides a 64-bit signed integer, whose value cannot be set
directly, but only incremented or decremented. Cassandra is one of the few data‐
bases that provides race-free increments across data centers. Counters are fre‐
quently used for tracking statistics such as numbers of page views, tweets, log
messages, and so on. The counter type has some special restrictions. It cannot be
used as part of a primary key. If a counter is used, all of the columns other than
primary key columns must be counters.

For example, you could create an additional table to count the number of times a
user has visited a website:

cqlsh:my_keyspace> CREATE TABLE user_visits (
 user_id uuid PRIMARY KEY, visits counter);

You’d then increment the value for user “Mary” according to the unique ID
assigned previously each time she visits the site:

cqlsh:my_keyspace> UPDATE user_visits SET visits = visits + 1
 WHERE user_id=ebf87fee-b372-4104-8a22-00c1252e3e05;

And you could read out the value of the counter just as you read any other
column:

cqlsh:my_keyspace> SELECT visits from user_visits WHERE
 user_id=ebf87fee-b372-4104-8a22-00c1252e3e05;

 visits

 1

(1 rows)

There is no operation to reset a counter directly, but you can approximate a reset by
reading the counter value and decrementing by that value. Unfortunately, this is not
guaranteed to work perfectly, as the counter may have been changed elsewhere in
between reading and writing.

CQL Types | 71

A Warning About Idempotence

The counter increment and decrement operators are not idempo‐
tent. An idempotent operation is one that will produce the same
result when executed multiple times. Incrementing and decrement‐
ing are not idempotent because executing them multiple times
could result in different results as the stored value is increased or
decreased.
To see how this is possible, consider that Cassandra is a distributed
system in which interactions over a network may fail when a node
fails to respond to a request indicating success or failure. A typical
client response to this request is to retry the operation. The result
of retrying a nonidempotent operation such as incrementing a
counter is not predictable. Since it is not known whether the first
attempt succeeded, the value may have been incremented twice.
This is not a fatal flaw, but something you’ll want to be aware of
when using counters.
The only other CQL operation that is not idempotent besides
incrementing or decrementing a counter is adding an item to a
list, which we’ll discuss next.

Collections
Let’s say you wanted to extend the user table to support multiple email addresses.
One way to do this would be to create additional columns such as email2, email3,
and so on. While this approach will work, it does not scale very well and might cause
a lot of rework. It is much simpler to deal with the email addresses as a group or “col‐
lection.” CQL provides three collection types to help you with these situations: sets,
lists, and maps. Let’s now take a look at each of them:

set

The set data type stores a collection of elements. The elements are unordered
when stored, but are returned in sorted order. For example, text values are
returned in alphabetical order. Sets can contain the simple types you’ve learned
previously, as well as user-defined types (which we’ll discuss momentarily) and
even other collections. One advantage of using set is the ability to insert addi‐
tional items without having to read the contents first.

You can modify the user table to add a set of email addresses:

cqlsh:my_keyspace> ALTER TABLE user ADD emails set<text>;

Then add an email address for Mary and check that it was added successfully:

cqlsh:my_keyspace> UPDATE user SET emails = { 'mary@example.com' }
 WHERE first_name = 'Mary' AND last_name = 'Rodriguez';
cqlsh:my_keyspace> SELECT emails FROM user WHERE first_name =

72 | Chapter 4: The Cassandra Query Language

 'Mary' AND last_name = 'Rodriguez';

 emails

 {'mary@example.com'}

(1 rows)

Note that in adding that first email address, you replaced the previous contents of
the set, which in this case was null. You can add another email address later
without replacing the whole set by using concatenation:

cqlsh:my_keyspace> UPDATE user
 SET emails = emails + {'mary.rodriguez.AZ@gmail.com' }
 WHERE first_name = 'Mary' AND last_name = 'Rodriguez';
cqlsh:my_keyspace> SELECT emails FROM user
 WHERE first_name = 'Mary' AND last_name = 'Rodriguez';

 emails

 {'mary.mcdonald.AZ@gmail.com', 'mary@example.com'}

(1 rows)

Other Set Operations

You can also clear items from the set by using the subtraction
operator: SET emails = emails - {'mary@example.com'}.
Alternatively, you could clear out the entire set by using the
empty set notation: SET emails = {}.

list

The list data type contains an ordered list of elements. By default, the values are
stored in order of insertion. You can modify the user table to add a list of phone
numbers:

cqlsh:my_keyspace> ALTER TABLE user ADD phone_numbers list<text>;

Then add a phone number for Mary and check that it was added successfully:

cqlsh:my_keyspace> UPDATE user SET phone_numbers = ['1-800-999-9999']
 WHERE first_name = 'Mary' AND last_name = 'Rodriguez';
cqlsh:my_keyspace> SELECT phone_numbers FROM user WHERE
 first_name = 'Mary' AND last_name = 'Rodriguez';

 phone_numbers

 ['1-800-999-9999']

CQL Types | 73

mailto:mary@example.com

(1 rows)

Let’s add a second number by appending it:

cqlsh:my_keyspace> UPDATE user SET phone_numbers =
 phone_numbers + ['480-111-1111']
 WHERE first_name = 'Mary' AND last_name = 'Rodriguez';
cqlsh:my_keyspace> SELECT phone_numbers FROM user WHERE
 first_name = 'Mary' AND last_name = 'Rodriguez';

 phone_numbers

 ['1-800-999-9999', '480-111-1111']

(1 rows)

The second number you added now appears at the end of the list.

You could also have prepended the number to the front of the
list by reversing the order of the values: SET phone_numbers =
[‘4801234567'] + phone_numbers.

You can replace an individual item in the list when you reference it by its index:

cqlsh:my_keyspace> UPDATE user SET phone_numbers[1] = '480-111-1111'
 WHERE first_name = 'Mary' AND last_name = 'Rodriguez';

As with sets, you can also use the subtraction operator to remove items that
match a specified value:

cqlsh:my_keyspace> UPDATE user SET phone_numbers =
 phone_numbers - ['480-111-1111']
 WHERE first_name = 'Mary' AND last_name = 'Rodriguez';

Finally, you can delete a specific item directly using its index:

cqlsh:my_keyspace> DELETE phone_numbers[0] from user WHERE
 first_name = 'Mary' AND last_name = 'Rodriguez';

74 | Chapter 4: The Cassandra Query Language

Expensive List Operations

Because a list stores values according to position, there is the
potential that updating or deleting a specific item in a list could
require Cassandra to read the entire list, perform the requested
operation, and write out the entire list again. This could be an
expensive operation if you have a large number of values in the list.
For this reason, many users prefer to use the set or map types, espe‐
cially in cases where there is the potential to update the contents of
the collection.

map

The map data type contains a collection of key-value pairs. The keys and the val‐
ues can be of any type except counter. Let’s try this out by using a map to store
information about user logins. Create a column to track login session time, in
seconds, with a timeuuid as the key:

cqlsh:my_keyspace> ALTER TABLE user ADD
 login_sessions map<timeuuid, int>;

Then you can add a couple of login sessions for Mary and see the results:

cqlsh:my_keyspace> UPDATE user SET login_sessions =
 { now(): 13, now(): 18}
 WHERE first_name = 'Mary' AND last_name = 'Rodriguez';
cqlsh:my_keyspace> SELECT login_sessions FROM user
 WHERE first_name = 'Mary' AND last_name = 'Rodriguez';

 login_sessions

 {839b2660-d1c0-11e9-8309-6d2c86545d91: 13,
 839b2661-d1c0-11e9-8309-6d2c86545d91: 18}

(1 rows)

We can also reference an individual item in the map by using its key.

Collection types are very useful in cases where we need to store a variable number of
elements within a single column.

Tuples
Now you might decide that you need to keep track of physical addresses for your
users. You could just use a single text column to store these values, but that would put
the burden of parsing the various components of the address on the application. It
would be better if you could define a structure in which to store the addresses to
maintain the integrity of the different components.

CQL Types | 75

Fortunately, Cassandra provides two different ways to manage more complex data
structures: tuples and user-defined types.

First, let’s have a look at tuples, which provide a way to have a fixed-length set of val‐
ues of various types. For example, you could add a tuple column to the user table that
stores an address. You could have added a tuple to define addresses, assuming a
three-line address format and an integer postal code such as a US zip code:

cqlsh:my_keyspace> ALTER TABLE user ADD
 address tuple<text, text, text, int>;

Then you could populate an address using the following statement:

cqlsh:my_keyspace> UPDATE user SET address =
 ('7712 E. Broadway', 'Tucson', 'AZ', 85715)
 WHERE first_name = 'Mary' AND last_name = 'Rodriguez';

This does provide you the ability to store an address, but it can be a bit awkward to
try to remember the positional values of the various fields of a tuple without having a
name associated with each value. There is also no way to update individual fields of a
tuple; the entire tuple must be updated. For these reasons, tuples are infrequently
used in practice, because Cassandra offers an alternative that provides a way to name
and access each value, which we’ll examine next.

But first, let’s use the CQL DROP command to get rid of the address column so that
you can replace it with something better:

cqlsh:my_keyspace> ALTER TABLE user DROP address;

User-Defined Types
Cassandra gives you a way to define your own types to extend its data model. These
user-defined types (UDTs) are easier to use than tuples since you can specify the val‐
ues by name rather than position. Create your own address type:

cqlsh:my_keyspace> CREATE TYPE address (
 street text,
 city text,
 state text,
 zip_code int);

A UDT is scoped by the keyspace in which it is defined. You could have written CRE
ATE TYPE my_keyspace.address. If you run the command DESCRIBE KEYSPACE

my_keyspace, you’ll see that the address type is part of the keyspace definition.

Now that you have defined the address type, you can use it in the user table. Rather
than simply adding a single address, you can use a map to store multiple addresses to
which you can give names such as “home,” “work,” and so on. However, you immedi‐
ately run into a problem:

76 | Chapter 4: The Cassandra Query Language

cqlsh:my_keyspace> ALTER TABLE user ADD
 addresses map<text, address>;
InvalidRequest: code=2200 [Invalid query] message="Non-frozen
 collections are not allowed inside collections: map<text,
 address>"

What is going on here? It turns out that a user-defined data type is considered a col‐
lection, as its implementation is similar to a set, list, or map. You’ve asked Cassan‐
dra to nest one collection inside another.

Freezing Collections

Cassandra releases prior to 2.2 do not fully support the nesting of
collections. Specifically, the ability to access individual attributes of
a nested collection is not yet supported, because the nested collec‐
tion is serialized as a single object by the implementation. There‐
fore, the entire nested collection must be read and written in its
entirety.
Freezing is a concept that was introduced as a forward compatibil‐
ity mechanism. For now, you can nest a collection within another
collection by marking it as frozen, which means that Cassandra
will store that value as a blob of binary data. In the future, when
nested collections are fully supported, there will be a mechanism to
“unfreeze” the nested collections, allowing the individual attributes
to be accessed.
You can also use a collection as a primary key if it is frozen.

Now that we’ve taken a short detour to discuss freezing and nested collections, let’s
get back to modifying your table, this time marking the address as frozen:

cqlsh:my_keyspace> ALTER TABLE user ADD addresses map<text,
 frozen<address>>;

Now let’s add a home address for Mary:

cqlsh:my_keyspace> UPDATE user SET addresses = addresses +
 {'home': { street: '7712 E. Broadway', city: 'Tucson',
 state: 'AZ', zip_code: 85715 } }
 WHERE first_name = 'Mary' AND last_name = 'Rodriguez';
cqlsh:my_keyspace> SELECT addresses FROM user
 WHERE first_name = 'Mary' AND last_name = 'Rodriguez';

 addresses

 {'home': {street: '7712 E. Broadway',
 city: 'Tucson', state: 'AZ', zip_code: 85715}}

(1 rows)

CQL Types | 77

Now that you’ve learned about the various types, let’s take a step back and look at the
tables you’ve created so far by describing my_keyspace:

cqlsh:my_keyspace> DESCRIBE KEYSPACE my_keyspace ;

CREATE KEYSPACE my_keyspace WITH replication = {'class':
 'SimpleStrategy', 'replication_factor': '1') AND
 durable_writes = true;

CREATE TYPE my_keyspace.address (
 street text,
 city text,
 state text,
 zip_code int
);

CREATE TABLE my_keyspace.user (
 last_name text,
 first_name text,
 addresses map<text, frozen<address>>,
 emails set<text>,
 id uuid,
 login_sessions map<timeuuid, int>,
 middle_initial text,
 phone_numbers list<text>,
 title text,
 PRIMARY KEY (last_name, first_name)
) WITH CLUSTERING ORDER BY (first_name ASC)
 AND bloom_filter_fp_chance = 0.01
 AND caching = {'keys': 'ALL', 'rows_per_partition': 'NONE'}
 AND comment = ''
 AND compaction = {'class': 'org.apache.cassandra.db.compaction
 .SizeTieredCompactionStrategy', 'max_threshold': '32',
 'min_threshold': '4'}
 AND compression = {'chunk_length_in_kb': '16', 'class':
 'org.apache.cassandra.io.compress.LZ4Compressor'}
 AND crc_check_chance = 1.0
 AND dclocal_read_repair_chance = 0.1
 AND default_time_to_live = 0
 AND gc_grace_seconds = 864000
 AND max_index_interval = 2048
 AND memtable_flush_period_in_ms = 0
 AND min_index_interval = 128
 AND read_repair_chance = 0.0
 AND speculative_retry = '99PERCENTILE';

CREATE TABLE my_keyspace.user_visits (
 user_id uuid PRIMARY KEY,
 visits counter
) WITH bloom_filter_fp_chance = 0.01
 AND caching = {'keys': 'ALL', 'rows_per_partition': 'NONE'}
 AND comment = ''

78 | Chapter 4: The Cassandra Query Language

 AND compaction = {'class': 'org.apache.cassandra.db.compaction
 .SizeTieredCompactionStrategy', 'max_threshold': '32',
 'min_threshold': '4'}
 AND compression = {'chunk_length_in_kb': '16', 'class':
 'org.apache.cassandra.io.compress.LZ4Compressor'}
 AND crc_check_chance = 1.0
 AND dclocal_read_repair_chance = 0.1
 AND default_time_to_live = 0
 AND gc_grace_seconds = 864000
 AND max_index_interval = 2048
 AND memtable_flush_period_in_ms = 0
 AND min_index_interval = 128
 AND read_repair_chance = 0.0
 AND speculative_retry = '99PERCENTILE';

Practicing CQL Commands

The commands listed in this chapter to operate on the user table
are available as a gist on GitHub to make it easier for you to exe‐
cute them. The file is named cqlsh_intro.cql.

Summary
In this chapter, you took a quick tour of Cassandra’s data model of clusters, keyspaces,
tables, keys, rows, and columns. In the process, you learned a lot of CQL syntax and
gained more experience working with tables and columns in cqlsh. If you’re interes‐
ted in diving deeper into CQL, you can read the full language specification.

Summary | 79

https://git.io/fjihw
https://oreil.ly/fWE0X

CHAPTER 5

Data Modeling

The data model you use is the most important factor in your success with Cassandra.
—Patrick McFadin

More than any configuration or tuning you can perform, your data model is the main
factor that will affect your application performance and cluster maintenance. In this
chapter, you’ll learn how to design data models for Cassandra, including a data mod‐
eling process and notation. To apply this knowledge, you’ll design the data model for
a sample application, which you’ll build over the next several chapters. This will help
show how all the parts fit together. Along the way, you’ll see some tools to help you
manage your CQL scripts.

Conceptual Data Modeling
First, let’s create a simple domain model that is easy to understand in the relational
world, and then see how you might map it from a relational to a distributed hash
table model in Cassandra.

To create the example, we want to use something that is complex enough to show the
various data structures and design patterns, but not something that will bog you
down with details. Also, a domain that’s familiar to everyone will allow you to con‐
centrate on how to work with Cassandra, not on what the application domain is all
about.

Let’s use a domain that is easily understood and that everyone can relate to: making
hotel reservations.

Our conceptual domain includes hotels, guests that stay in the hotels, a collection of
rooms for each hotel, the rates and availability of those rooms, and a record of reser‐
vations booked for guests. Hotels typically also maintain a collection of “points of

81

interest,” which are parks, museums, shopping galleries, monuments, or other places
near the hotel that guests might want to visit during their stay. Both hotels and points
of interest need to maintain geolocation data so that they can be found on maps for
mashups, and to calculate distances.

The conceptual domain is shown in Figure 5-1 using the entity–relationship model
popularized by Peter Chen. This simple diagram represents the entities in the domain
with rectangles, and attributes of those entities with ovals. Attributes that represent
unique identifiers for items are underlined. Relationships between entities are repre‐
sented as diamonds, and the connectors between the relationship and each entity
show the multiplicity of the connection.

Figure 5-1. Hotel domain entity-relationship diagram

Obviously, in the real world, there would be many more considerations and much
more complexity. For example, hotel rates are notoriously dynamic, and calculating
them involves a wide array of factors. Here you’ll define something complex enough
to be interesting and touch on the important points, but simple enough to maintain
the focus on learning Cassandra.

RDBMS Design
When you set out to build a new data-driven application that will use a relational
database, you might start by modeling the domain as a set of properly normalized
tables and use foreign keys to reference related data in other tables.

Figure 5-2 shows how you might represent the data storage for an application using a
relational database model. The relational model includes a couple of “join” tables in
order to realize the many-to-many relationships from the conceptual model of

82 | Chapter 5: Data Modeling

hotels-to-points of interest, rooms-to-amenities, rooms-to-availability, and guests-to-
rooms (via a reservation).

Figure 5-2. A simple hotel search system using RDBMS

Design Differences Between RDBMS and Cassandra
Of course, because this is a Cassandra book, what you really want is to model your
data so you can store it in Cassandra. Before you start creating a Cassandra data
model, let’s take a minute to highlight some of the key differences in doing data mod‐
eling for Cassandra versus a relational database.

No joins
You cannot perform joins in Cassandra. If you have designed a data model and find
that you need something like a join, you’ll have to either do the work on the client
side, or create a denormalized second table that represents the join results for you.
This latter option is preferred in Cassandra data modeling. Performing joins on the
client should be a very rare case; you really want to duplicate (denormalize) the data
instead.

RDBMS Design | 83

No referential integrity
Although Cassandra supports features such as lightweight transactions and batches,
Cassandra itself has no concept of referential integrity across tables. In a relational
database, you could specify foreign keys in a table to reference the primary key of a
record in another table. But Cassandra does not enforce this. It is still a common
design requirement to store IDs related to other entities in your tables, but operations
such as cascading deletes are not available.

Denormalization
In relational database design, you are often taught the importance of normalization.
This is not an advantage when working with Cassandra because it performs best
when the data model is denormalized. It is often the case that companies end up
denormalizing data in relational databases as well. There are two common reasons for
this. One is performance. Companies simply can’t get the performance they need
when they have to do so many joins on years’ worth of data, so they denormalize
along the lines of known queries. This ends up working, but goes against the grain of
how relational databases are intended to be designed, and ultimately makes one ques‐
tion whether using a relational database is the best approach in these circumstances.

A second reason that relational databases get denormalized on purpose is a business
document structure that requires retention. That is, you have an enclosing table that
refers to a lot of external tables whose data could change over time, but you need to
preserve the enclosing document as a snapshot in history. The common example here
is with invoices. You already have customer and product tables, and you’d think that
you could just make an invoice that refers to those tables. But this should never be
done in practice. Customer or price information could change, and then you would
lose the integrity of the invoice document as it was on the invoice date, which could
violate audits, reports, or laws, and cause other problems.

In the relational world, denormalization violates Codd’s normal forms, and you try to
avoid it. But in Cassandra, denormalization is, well, perfectly normal. It’s not required
if your data model is simple. But don’t be afraid of it.

Server-Side Denormalization with Materialized Views

Historically, denormalization in Cassandra has required designing
and managing multiple tables using techniques we will introduce
momentarily. Beginning with the 3.0 release, Cassandra provides
an experimental feature known as materialized views, which allows
you to create multiple denormalized views of data based on a base
table design. Cassandra manages materialized views on the server,
including the work of keeping the views in sync with the table.
We’ll share examples of classic denormalization in this chapter, and
discuss materialized views in Chapter 7.

84 | Chapter 5: Data Modeling

Query-first design
Relational modeling, in simple terms, means that you start from the conceptual
domain and then represent the nouns in the domain in tables. You then assign pri‐
mary keys and foreign keys to model relationships. When you have a many-to-many
relationship, you create the join tables that represent just those keys. The join tables
don’t exist in the real world, and are a necessary side effect of the way relational mod‐
els work. After you have all your tables laid out, you can start writing queries that pull
together disparate data using the relationships defined by the keys. The queries in the
relational world are very much secondary. It is assumed that you can always get the
data you want as long as you have your tables modeled properly. Even if you have to
use several complex subqueries or join statements, this is usually true.

By contrast, in Cassandra you don’t start with the data model; you start with the
query model. Instead of modeling the data first and then writing queries, with Cas‐
sandra you model the queries and let the data be organized around them. Think of
the most common query paths your application will use, and then create the tables
that you need to support them.

Detractors have suggested that designing the queries first is overly constraining on
application design, not to mention database modeling. But it is perfectly reasonable to
expect that you should think hard about the queries in your application, just as you
would, presumably, think hard about your relational domain. You may get it wrong,
and then you’ll have problems in either world. Or your query needs might change
over time, and then you’ll have to work to update your data set. But this is no differ‐
ent from defining the wrong tables, or needing additional tables, in an RDBMS.

Designing for optimal storage
In a relational database, it is frequently transparent to the user how tables are stored
on disk, and it is rare to hear of recommendations about data modeling based on how
the RDBMS might store tables on disk. However, that is an important consideration
in Cassandra. Because Cassandra tables are each stored in separate files on disk, it’s
important to keep related columns defined together in the same table.

A key goal as you begin creating data models in Cassandra is to minimize the number
of partitions that must be searched in order to satisfy a given query. Because the parti‐
tion is a unit of storage that does not get divided across nodes, a query that searches a
single partition will typically yield the best performance.

Sorting is a design decision
In an RDBMS, you can easily change the order in which records are returned to you
by using ORDER BY in your query. The default sort order is not configurable; by
default, records are returned in the order in which they are written. If you want to

RDBMS Design | 85

change the order, you just modify your query, and you can sort by any list of
columns.

In Cassandra, however, sorting is treated differently; it is a design decision. The sort
order available on queries is fixed, and is determined entirely by the selection of clus‐
tering columns you supply in the CREATE TABLE command. The CQL SELECT state‐
ment does support ORDER BY semantics, but only in the order specified by the
clustering columns (ascending or descending).

Defining Application Queries
Let’s try the query-first approach to start designing the data model for your hotel
application. The user interface design for the application is often a great artifact to use
to begin identifying queries. Let’s assume that you’ve talked with the project stake‐
holders, and your UX designers have produced user interface designs or wireframes
for the key use cases. You’ll likely have a list of shopping queries like the following:

• Q1. Find hotels near a given point of interest.
• Q2. Find information about a given hotel, such as its name and location.
• Q3. Find points of interest near a given hotel.
• Q4. Find an available room in a given date range.
• Q5. Find the rate and amenities for a room.

Number Your Queries

It is often helpful to be able to refer to queries by a shorthand num‐
ber rather that explaining them in full. The queries listed here are
numbered Q1, Q2, and so on, which is how we will reference them
in diagrams throughout this example.

Now if your application is to be a success, you’ll certainly want your customers to be
able to book reservations at your hotels. This includes steps such as selecting an avail‐
able room and entering their guest information. So clearly you will also need some
queries that address the reservation and guest entities from the conceptual data
model. Even here, however, you’ll want to think not only from the customer perspec‐
tive in terms of how the data is written, but also in terms of how the data will be quer‐
ied by downstream use cases.

Our natural tendency as data modelers would be to focus first on designing the tables
to store reservation and guest records, and only then start thinking about the queries
that would access them. You may have felt a similar tension already when we began
discussing the shopping queries before, thinking “but where did the hotel and point

86 | Chapter 5: Data Modeling

of interest data come from?” Don’t worry, we will get to this soon enough. Here are
some queries that describe how your users will access reservations:

• Q6. Look up a reservation by confirmation number.
• Q7. Look up a reservation by hotel, date, and guest name.
• Q8. Look up all reservations by guest name.
• Q9. View guest details.

Examine the queries in the context of the workflow of the application in Figure 5-3.
Each box on the diagram represents a step in the application workflow, with arrows
indicating the flows between steps and the associated query. If you’ve modeled your
application well, each step of the workflow accomplishes a task that “unlocks” subse‐
quent steps. For example, the “View hotels near POI” task helps the application learn
about several hotels, including their unique keys. The key for a selected hotel may be
used as part of Q2, in order to obtain a detailed description of the hotel. The act of
booking a room creates a reservation record that may be accessed by the guest and
hotel staff at a later time through various additional queries.

Figure 5-3. Hotel application queries

Logical Data Modeling
Now that you have defined your queries, you’re ready to begin designing Cassandra
tables. First, you’ll create a logical model containing a table for each query, capturing
entities and relationships from the conceptual model.

To name each table, identify the primary entity type for which you are querying, and
use that to start the entity name. If you are querying by attributes of other related
entities, you append those to the table name, separated with _by_; for example,
hotels_by_poi.

Logical Data Modeling | 87

Next, identify the primary key for the table, adding partition key columns based on
the required query attributes, and clustering columns in order to guarantee unique‐
ness and support desired sort ordering.

The Importance of Primary Keys in Cassandra

The design of the primary key is extremely important, as it will
determine how much data will be stored in each partition and how
that data is organized on disk, which in turn will affect how quickly
Cassandra processes read queries.

You complete the design of each table by adding any additional attributes identified
by the query. If any of these additional attributes are the same for every instance of
the partition key, mark the column as static.

Now that was a pretty quick description of a fairly involved process, so it will be
worth your time to work through a detailed example. First, let’s introduce a notation
that you can use to represent your logical models.

Introducing Chebotko Diagrams
Several individuals within the Cassandra community have proposed notations for
capturing data models in diagrammatic form. We’ve elected to use a notation popu‐
larized by Artem Chebotko that provides a simple, informative way to visualize the
relationships between queries and tables in your designs. Figure 5-4 shows the Che‐
botko notation for a logical data model.

Figure 5-4. A Chebotko logical diagram

88 | Chapter 5: Data Modeling

Each table is shown with its title and a list of columns. Primary key columns are iden‐
tified via symbols such as K for partition key columns and C↑ or C↓ to represent clus‐
tering columns. Lines are shown entering tables or between tables to indicate the
queries that each table is designed to support.

Hotel Logical Data Model
Figure 5-5 shows a Chebotko logical data model for the queries involving hotels,
points of interest, rooms, and amenities. One thing you’ll notice immediately is that
the Cassandra design doesn’t include dedicated tables for rooms or amenities, as you
had in the relational design. This is because your workflow didn’t identify any queries
requiring this direct access.

Figure 5-5. Hotel domain logical model

Let’s explore the details of each of these tables.

The first query (Q1) is to find hotels near a point of interest, so you’ll call the table
hotels_by_poi. You’re searching by a named point of interest, so that is a clue that
the point of interest should be a part of the primary key. Let’s reference the point of
interest by name, because according to your workflow that is how your users will start
their search.

You’ll note that you certainly could have more than one hotel near a given point of
interest, so you’ll need another component in your primary key in order to make sure

Logical Data Modeling | 89

you have a unique partition for each hotel. So you add the hotel key as a clustering
column.

Let’s also assume that according to your application workflow, your user will provide
a name of a point of interest, but would benefit from seeing the description of the
point of interest alongside hotel results. Therefore you include the poi_description
as a column in the hotels_by_poi table, and designate this value as a static column
since the point of interest description is the same for all rows in a partition.

Make Your Primary Keys Unique

An important consideration in designing your table’s primary key
is making sure that it defines a unique data element. Otherwise you
run the risk of accidentally overwriting data.

Now for the second query (Q2), you’ll need a table to get information about a specific
hotel. One approach would be to put all of the attributes of a hotel in the
hotels_by_poi table, but you choose to add only those attributes required by your
application workflow.

From the workflow diagram, you note that the hotels_by_poi table is used to display
a list of hotels with basic information on each hotel, and the application knows the
unique identifiers of the hotels returned. When the user selects a hotel to view details,
you can then use Q2, which is used to obtain details about the hotel. Because you
already have the hotel_id from Q1, you use that as a reference to the hotel you’re
looking for. Therefore the second table is just called hotels.

Another option would be to store a set of poi_names in the hotels table. This is an
equally valid approach. You’ll learn through experience which approach is best for
your application.

Q3 is just a reverse of Q1—looking for points of interest near a hotel, rather than
hotels near a point of interest. This time, however, you need to access the details of
each point of interest, as represented by the pois_by_hotel table. As you did previ‐
ously, you add the point of interest name as a clustering key to guarantee uniqueness.

At this point, let’s now consider how to support query Q4 to help your users find
available rooms at a selected hotel for the nights they are interested in staying. Note
that this query involves both a start date and an end date. Because you’re querying
over a range instead of a single date, you know that you’ll need to use the date as a
clustering key. You use the hotel_id as a primary key to group room data for each
hotel on a single partition, which should help your search be super fast. Let’s call this
the available_rooms_by_hotel_date table.

90 | Chapter 5: Data Modeling

Searching Over a Range

Use clustering columns to store attributes that you need to access
in a range query. Remember that the order of the clustering col‐
umns is important. You’ll learn more about range queries in Chap‐
ter 9.

The Wide Partition Pattern
The design of the available_rooms_by_hotel_date table is an instance of the wide
partition pattern. This pattern is sometimes called the wide row pattern when discus‐
sing databases that support similar models, but wide partition is a more accurate
description from a Cassandra perspective. The essence of the pattern is to group mul‐
tiple related rows in a partition in order to support fast access to multiple rows within
the partition in a single query.

In order to round out the shopping portion of your data model, you add the ameni
ties_by_room table to support Q5. This will allow your user to view the amenities of
one of the rooms that is available for the desired stay dates.

Reservation Logical Data Model
Now let’s switch gears to look at the reservation queries. Figure 5-6 shows a logical
data model for reservations. You’ll notice that these tables represent a denormalized
design; the same data appears in multiple tables, with differing keys.

Figure 5-6. A denormalized logical model for reservations

Logical Data Modeling | 91

In order to satisfy Q6, the reservations_by_confirmation table supports the lookup
of reservations by a unique confirmation number provided to the customer at the
time of booking.

If the guest doesn’t have the confirmation number, the reservations_by_guest table
can be used to look up the reservation by guest name. You could envision query Q7
being used on behalf of a guest on a self-serve website or a call center agent trying to
assist the guest. Because the guest name might not be unique, you include the guest
ID here as a clustering column as well.

The hotel staff might wish to see a record of upcoming reservations by date in order
to get insight into how the hotel is performing, such as the dates the hotel is sold out
or undersold. Q8 supports the retrieval of reservations for a given hotel by date.

Finally, you create a guests table. You’ll notice that it has similar attributes to the
user table from Chapter 4. This provides a single location that you can use to store
data about guests. In this case, you specify a separate unique identifier for your guest
records, as it is not uncommon for guests to have the same name. In many organiza‐
tions, a customer database such as the guests table would be part of a separate cus‐
tomer management application, which is why we’ve omitted other guest access
patterns from this example.

Design Queries for All Stakeholders

Q8 and Q9 in particular help to remind you that you need to create
queries that support various stakeholders of your application, not
just customers but staff as well, and perhaps even the analytics
team, suppliers, and so on.

More Patterns and Anti-Patterns
As with other types of software design, there are some well-known patterns and anti-
patterns for data modeling in Cassandra. You’ve already used one of the most com‐
mon patterns in your hotel model—the wide partition pattern.

The time series pattern is an extension of the wide partition pattern. In this pattern, a
series of measurements at specific time intervals are stored in a wide partition, where
the measurement time is used as part of the partition key. This pattern is frequently
used in domains including business analysis, sensor data management, and scientific
experiments.

The time series pattern is also useful for data other than measurements. Consider the
example of a banking application. You could store each customer’s balance in a row,
but that might lead to a lot of read and write contention as various customers check
their balance or make transactions. You’ll probably be tempted to wrap a transaction

92 | Chapter 5: Data Modeling

around your writes just to protect the balance from being updated in error. In con‐
trast, a time series–style design would store each transaction as a timestamped row
and leave the work of calculating the current balance to the application.

One design trap that many new users fall into is attempting to use Cassandra as a
queue. Each item in the queue is stored with a timestamp in a wide partition. Items
are appended to the end of the queue and read from the front, being deleted after they
are read. This is a design that seems attractive, especially given its apparent similarity
to the time series pattern. The problem with this approach is that the deleted items
are now tombstones that Cassandra must scan past in order to read from the front of
the queue. Over time, a growing number of tombstones begins to degrade read per‐
formance. We’ll discuss tombstones in Chapter 6.

The queue anti-pattern serves as a reminder that any design that relies on the deletion
of data is potentially a poorly performing design.

Physical Data Modeling
Once you have a logical data model defined, creating the physical model is a relatively
simple process.

You walk through each of your logical model tables, assigning types to each item. You
can use any of the types you learned in Chapter 4, including the basic types, collec‐
tions, and user-defined types. You may identify additional user-defined types that can
be created to simplify your design.

After you’ve assigned data types, you analyze your model by performing size calcula‐
tions and testing out how the model works. You may make some adjustments based
on your findings. Once again, let’s cover the data modeling process in more detail by
working through an example.

First, let’s look at a few additions to the Chebotko notation for physical data models.

Chebotko Physical Diagrams
To draw physical models, you need to be able to add the typing information for each
column. Figure 5-7 shows the addition of a type for each column in a sample table.

The figure includes a designation of the keyspace containing each table, and visual
cues for columns represented using collections and user-defined types. Note also the
designation of static columns and secondary index columns (we’ll discuss secondary
indexes in Chapter 7). There is no restriction on assigning these as part of a logical
model, but they are typically more of a physical data modeling concern.

Physical Data Modeling | 93

Figure 5-7. Extending the Chebotko notation for physical data models

Hotel Physical Data Model
Now let’s get to work on your physical model. First, you need keyspaces to contain
your tables. To keep the design relatively simple, you create a hotel keyspace to con‐
tain tables for hotel and availability data, and a reservation keyspace to contain
tables for reservation and guest data. In a real system, you might divide the tables
across even more keyspaces in order to separate concerns.

For the hotels table, you use Cassandra’s text type to represent the hotel’s id. For the
address, you use the address type similar to the one you created in Chapter 4. You
use the text type to represent the phone number, as there is considerable variance in
the formatting of numbers between countries.

94 | Chapter 5: Data Modeling

Using Unique Identifiers as References

While it would make sense to use the uuid type for attributes such
as the hotel_id, for the purposes of this book we mostly use text
attributes as identifiers, to keep the samples simple and readable.
For example, a common convention in the hospitality industry is to
reference properties by short codes like “AZ123” or “NY229.” We’ll
use these values for hotel_ids, while acknowledging they are not
necessarily globally unique.
You’ll find that it’s often helpful to use unique IDs to uniquely ref‐
erence elements, and to use these uuids as references in tables rep‐
resenting other entities. This helps to minimize coupling between
different entity types. This may prove especially effective if you are
using a microservice architectural style for your application, in
which there are separate services responsible for each entity type.

As you work to create physical representations of various tables in your logical hotel
data model, you use the same approach. The resulting design is shown in Figure 5-8.

Figure 5-8. Hotel physical model

The address type is also included in the design, designated with an asterisk to denote
that it is a user-defined type, and has no primary key columns identified. You make
use of this type in the hotels and hotels_by_poi tables.

Physical Data Modeling | 95

Taking Advantage of User-Defined Types

User-defined types are frequently used to create logical groupings
of nonprimary key columns, as you have done with the address
user-defined type. UDTs can also be stored in collections to further
reduce complexity in the design.
Remember that the scope of a UDT is the keyspace in which it is
defined. To use address in the reservation keyspace you’re about
to design, you’ll have to declare it again.

Reservation Physical Data Model
Now, let’s examine the reservation tables in your design. Remember that your logical
model contained three denormalized tables to support queries for reservations by
confirmation number, guest, and hotel and date. For the first iteration of your physi‐
cal data model design, let’s assume you’re going to manage this denormalization man‐
ually (see Figure 5-9). (We’ll revisit this design choice in Chapter 7 to consider using
Cassandra’s materialized view feature.)

Figure 5-9. Reservation physical model

Note that you have reproduced the address type in this keyspace and modeled the
guest_id as a uuid type in all of your tables.

96 | Chapter 5: Data Modeling

Evaluating and Refining
Once you’ve created your physical model, there are some steps you’ll want to take to
evaluate and refine your table designs to help ensure optimal performance.

Calculating Partition Size
The first thing that you want to look for is whether your tables will have partitions
that will be overly large, or to put it another way, too wide. Partition size is measured
by the number of cells (values) that are stored in the partition. Cassandra’s hard limit
is two billion cells per partition, but you’ll likely run into performance issues before
reaching that limit. The recommended size of a partition is not more than 100,000
cells.

In order to calculate the size of your partitions, you use the following formula:

Nv = Nr Nc − N pk − Ns + Ns

The number of values (or cells) in the partition (Nv) is equal to the number of static
columns (Ns) plus the product of the number of rows (Nr) and the number of of val‐
ues per row. The number of values per row is defined as the number of columns (Nc)
minus the number of primary key columns (Npk) and static columns (Ns).

The number of columns tends to be relatively static, although as you have seen, it is
quite possible to alter tables at runtime. For this reason, a primary driver of partition
size is the number of rows in the partition. This is a key factor that you must consider
in determining whether a partition has the potential to get too large. Two billion val‐
ues sounds like a lot, but in a sensor system where tens or hundreds of values are
measured every millisecond, the number of values starts to add up pretty fast.

Let’s take a look at one of your tables to analyze the partition size. Because it has a
wide partition design with one partition per hotel, you choose the avail

able_rooms_by_hotel_date table. The table has four columns total (Nc = 4), includ‐
ing three primary key columns (Npk = 3) and no static columns (Ns = 0). Plugging
these values into the formula, you get:

Nv = Nr 4 − 3 − 0 + 0 = 1Nr

Therefore the number of values for this table is equal to the number of rows. You still
need to determine a number of rows. To do this, you make some estimates based on
the application you’re designing. The table is storing a record for each room, in each
of your hotels, for every night. Let’s assume that your system will be used to store 2

Evaluating and Refining | 97

years of inventory at a time, and there are 5,000 hotels in the system, with an average
of 100 rooms in each hotel.

Since there is a partition for each hotel, the estimated number of rows per partition is
as follows:

Nr = 100 rooms/hotel × 730 days = 73, 000 rows

This relatively small number of rows per partition is not an issue, but the number of
cells may be. If you start storing more dates of inventory, or don’t manage the size of
your inventory well using TTL, you could start having issues. You still might want to
look at breaking up this large partition, which you’ll learn how to do shortly.

Estimate for the Worst Case

When performing sizing calculations, it is tempting to assume the
nominal or average case for variables, such as the number of rows.
Consider calculating the worst case as well, as these sorts of predic‐
tions have a way of coming true in successful systems.

Calculating Size on Disk
In addition to calculating the size of your partitions, it is also an excellent idea to esti‐
mate the amount of disk space that will be required for each table you plan to store in
the cluster. In order to determine the size, you use the following formula to determine
the size St of a partition:

St = ∑
i

sizeO f cki
+ ∑

j
sizeO f cs j

+ Nr × ∑
k

sizeO f crk
+ ∑

l
sizeO f ccl

+

Nv × sizeO f tavg

This is a bit more complex than the previous formula, but let’s break it down a bit at a
time, starting with the notation:

• In this formula, ck refers to partition key columns, cs to static columns, cr to regu‐
lar columns, and cc to clustering columns.

• The termavg refers to the average number of bytes of metadata stored per cell,
such as timestamps. It is typical to use an estimate of 8 bytes for this value.

• You recognize the number of rows Nr and number of values Nv from previous
calculations.

98 | Chapter 5: Data Modeling

• The sizeOf() function refers to the size, in bytes, of the CQL data type of each ref‐
erenced column.

The first term asks you to sum the size of the partition key columns. For this design,
the available_rooms_by_hotel_date table has a single partition key column, the
hotel_id, which you chose to make of type text. Assuming your hotel identifiers are
simple 5-character codes, you have a 5-byte value, so the sum of the partition key col‐
umn sizes is 5 bytes.

The second term asks you to sum the size of your static columns. This table has no
static columns, so in your case this is 0 bytes.

The third term is the most involved, and for good reason—it is calculating the size of
the cells in the partition. You sum the size of the clustering columns and regular col‐
umns. The clustering columns are the date, which is 4 bytes, and the room_number,
which is a 2-byte short integer, giving a sum of 6 bytes. There is only a single regular
column, the boolean is_available, which is 1 byte in size. Summing the regular col‐
umn size (1 byte) plus the clustering column size (6 bytes) gives a total of 7 bytes. To
finish up the term, you multiply this value by the number of rows (73,000), giving a
result of 511,000 bytes (0.51 MB).

The fourth term is simply counting the metadata that Cassandra stores for each cell.
In the storage format used by Cassandra 3.0 and later, the amount of metadata for a
given cell varies based on the type of data being stored, and whether or not custom
timestamp or TTL values are specified for individual cells. For your table, you reuse
the number of values from the previous calculation (73,000) and multiply by 8, which
gives a result of 0.58 MB.

Adding these terms together, you get the final estimate:

Partition size = 16 bytes + 0 bytes + 0.51 MB + 0.58 MB = 1.1 MB

This formula is an approximation of the uncompressed size of a partition on disk, but
is accurate enough to be quite useful. (Note that if you make use of SSTable compres‐
sion, as discussed in Chapter 13, the storage space required will be reduced.) Remem‐
bering that the partition must be able to fit on a single node, it looks like your table
design will not put a lot of strain on your disk storage.

A More Compact Storage Format

As mentioned in Chapter 2, Cassandra’s storage engine was re-
implemented for the 3.0 release, including a new format for
SSTable files. The previous format stored a separate copy of the
clustering columns as part of the record for each cell. The newer
format eliminates this duplication, which reduces the size of stored
data and simplifies the formula for computing that size.

Evaluating and Refining | 99

Keep in mind also that this estimate only counts a single replica of your data. You will
need to multiply the value obtained here by the number of partitions and the number
of replicas specified by the keyspace’s replication strategy in order to determine the
total required capacity for each table. This will come in handy when you learn how to
plan cluster deployments in Chapter 10.

Breaking Up Large Partitions
As discussed previously, your goal is to design tables that can provide the data you
need with queries that touch a single partition, or failing that, the minimum possible
number of partitions. However, as you have seen in previous examples, it is quite pos‐
sible to design wide partition–style tables that approach Cassandra’s built-in limits.
Performing sizing analysis on tables may reveal partitions that are potentially too
large, either in number of values, size on disk, or both.

The technique for splitting a large partition is straightforward: add an additional col‐
umn to the partition key. In most cases, moving one of the existing columns into the
partition key will be sufficient. Another option is to introduce an additional column
to the table to act as a sharding key, but this requires additional application logic.

Continuing to examine the available rooms example, if you add the date column to
the partition key for the available_rooms_by_hotel_date table, each partition
would then represent the availability of rooms at a specific hotel on a specific date.
This will certainly yield partitions that are significantly smaller, perhaps too small, as
the data for consecutive days will likely be on separate nodes. This also increases your
effort to do queries that span multiple days, as you will have to query multiple
partitions.

Another technique, known as bucketing, is often used to break the data into
moderate-size partitions. For example, you could bucketize the avail

able_rooms_by_hotel_date table by adding a month column to the partition key,
perhaps represented as an integer. The comparision with the original design is shown
in Figure 5-10. While the month column is partially duplicative of the date, it pro‐
vides a nice way of grouping related data in a partition that will not get too large.

If you really felt strongly about preserving a wide partition design, you could instead
add the room_id to the partition key, so that each partition would represent the avail‐
ability of the room across all dates. Because you haven’t identified a query that
involves searching availability of a specific room, the first or second design approach
is most suitable to your application needs.

100 | Chapter 5: Data Modeling

Figure 5-10. Adding a month bucket to the available_rooms_by_hotel_date table

Defining Database Schema
Once you have finished evaluating and refining your physical model, you’re ready to
implement the schema in CQL. Here is the schema for the hotel keyspace, using
CQL’s comment feature to document the query pattern supported by each table:

CREATE KEYSPACE hotel
 WITH replication = {'class': 'SimpleStrategy', 'replication_factor' : 3};

CREATE TYPE hotel.address (
 street text,
 city text,
 state_or_province text,
 postal_code text,
 country text
);

CREATE TABLE hotel.hotels_by_poi (
 poi_name text,
 poi_description text STATIC,
 hotel_id text,
 name text,
 phone text,
 address frozen<address>,
 PRIMARY KEY ((poi_name), hotel_id)
) WITH comment = 'Q1. Find hotels near given poi'
AND CLUSTERING ORDER BY (hotel_id ASC) ;

CREATE TABLE hotel.hotels (
 id text PRIMARY KEY,
 name text,
 phone text,
 address frozen<address>,
 pois set<text>
) WITH comment = 'Q2. Find information about a hotel';

Defining Database Schema | 101

CREATE TABLE hotel.pois_by_hotel (
 poi_name text,
 hotel_id text,
 description text,
 PRIMARY KEY ((hotel_id), poi_name)
) WITH comment = 'Q3. Find pois near a hotel';

CREATE TABLE hotel.available_rooms_by_hotel_date (
 hotel_id text,
 date date,
 room_number smallint,
 is_available boolean,
 PRIMARY KEY ((hotel_id), date, room_number)
) WITH comment = 'Q4. Find available rooms by hotel / date';

CREATE TABLE hotel.amenities_by_room (
 hotel_id text,
 room_number smallint,
 amenity_name text,
 description text,
 PRIMARY KEY ((hotel_id, room_number), amenity_name)
) WITH comment = 'Q5. Find amenities for a room';

Identify Partition Keys Explicitly

We recommend representing tables by surrounding the elements of
your partition key with parentheses, even though the partition key
consists of the single column poi_name. This is a best practice that
makes your selection of partition key more explicit to others read‐
ing your CQL.

Similarly, here is the schema for the reservation keyspace:

CREATE KEYSPACE reservation
 WITH replication = {'class': 'SimpleStrategy', 'replication_factor' : 3};

CREATE TYPE reservation.address (
 street text, city text,
 state_or_province text,
 postal_code text,
 country text
);

CREATE TABLE reservation.reservations_by_confirmation (
 confirm_number text,
 hotel_id text,
 start_date date,
 end_date date,
 room_number smallint,
 guest_id uuid,
 PRIMARY KEY (confirm_number)

102 | Chapter 5: Data Modeling

) WITH comment = 'Q6. Find reservations by confirmation number';

CREATE TABLE reservation.reservations_by_hotel_date (
 hotel_id text,
 start_date date,
 room_number smallint,
 end_date date,
 confirm_number text,
 guest_id uuid,
 PRIMARY KEY ((hotel_id, start_date), room_number)
) WITH comment = 'Q7. Find reservations by hotel and date';

CREATE TABLE reservation.reservations_by_guest (
 guest_last_name text,
 guest_id uuid,
 confirm_number text,
 hotel_id text,
 start_date date,
 end_date date,
 room_number smallint,
 PRIMARY KEY ((guest_last_name), guest_id, confirm_number)
) WITH comment = 'Q8. Find reservations by guest name';

CREATE TABLE reservation.guests (
 guest_id uuid PRIMARY KEY,
 first_name text,
 last_name text,
 title text,
 emails set<text>,
 phone_numbers list<text>,
 addresses map<text, frozen<address>>
) WITH comment = 'Q9. Find guest by ID';

You now have a complete Cassandra schema for storing data for your hotel
application.

Cassandra Data Modeling Tools
You’ve already had quite a bit of practice creating schema and manipluating data
using cqlsh, but now that you’re starting to create an application data model with
more tables, it starts to be more of a challenge to keep track of all of that CQL.

Thankfully, there are several tools available to help you design and manage your Cas‐
sandra schema and build queries:

Hackolade
Hackolade is a data modeling tool that supports schema design for Cassandra
and many other NoSQL databases. Hackolade supports the unique concepts of
CQL, such as partition keys and clustering columns, as well as data types,
including collections and UDTs. It also provides the ability to create Chebotko

Defining Database Schema | 103

https://oreil.ly/kvjI8

diagrams, as described in this chapter. Figure 5-11 shows an entity-relationship
diagram representing the conceptual data model from this chapter.

Figure 5-11. An entity-relationship diagram for hotel and reservation data in Hackolade

Kashlev Data Modeler
The Kashlev Data Modeler is a Cassandra data modeling tool that automates the
data modeling methodology described in this chapter, including identifying
access patterns; conceptual, logical, and physical data modeling; and schema gen‐
eration. It also includes model patterns that you can optionally leverage as a start‐
ing point for your designs.

DataStax DevCenter
DataStax DevCenter is a tool for managing schema, executing queries, and view‐
ing results. While the tool is no longer actively supported, it is still popular with
many developers and is available as a free download from DataStax. Figure 5-12
shows the hotel schema being edited in DevCenter.

The middle pane shows the currently selected CQL file, featuring syntax high‐
lighting for CQL commands, CQL types, and name literals. DevCenter provides
command completion as you type out CQL commands, and interprets the com‐
mands you type, highlighting any errors you make. The tool provides panes for
managing multiple CQL scripts and connections to multiple clusters. The con‐
nections are used to run CQL commands against live clusters and view the
results. The tool also has a query trace feature that is useful for gaining insight
into the performance of your queries.

104 | Chapter 5: Data Modeling

https://oreil.ly/d1mIN
https://oreil.ly/ftiob

Figure 5-12. Editing the hotel schema in DataStax DevCenter

IDE plug-ins
CQL plug-ins are available for several integrated development environments
(IDEs), such as IntelliJ IDEA and Apache NetBeans. These plug-ins typically pro‐
vide features such as schema management and query execution.

Make Sure Your Tools Have Full CQL Support

Some IDEs and tools that claim to support Cassandra do not
actually support CQL natively, but instead access Cassandra using a
JDBC/ODBC driver and interact with Cassandra as if it were a
relational database with SQL support. When selecting tools for
working with Cassandra, you’ll want to make sure they support
CQL and reinforce Cassandra best practices for data modeling, as
discussed in this chapter.

Defining Database Schema | 105

Summary
In this chapter, you learned how to create a complete, working Cassandra data model
and compared it with an equivalent relational model. You represented the data model
in both logical and physical forms, and learned about tools for realizing your data
models in CQL. Now that you have a working data model, you’re ready to continue
building a hotel application in the coming chapters.

106 | Chapter 5: Data Modeling

CHAPTER 6

The Cassandra Architecture

3.2 Architecture—fundamental concepts or properties of a system in its environment
embodied in its elements, relationships, and in the principles of its design and evolution.

—ISO/IEC/IEEE 42010

In this chapter, we examine several aspects of Cassandra’s architecture in order to
understand how it does its job. We’ll explain the topology of a cluster, and how nodes
interact in a peer-to-peer design to maintain the health of the cluster and exchange
data, using techniques like gossip, repair, hinted handoff, and lightweight transac‐
tions. Looking inside the design of a node, we examine architecture techniques Cas‐
sandra uses to support reading, writing, and deleting data, and examine how these
choices affect architectural considerations such as scalability, durability, availability,
manageability, and more. We’ll also learn about the data structures inside a node,
including commit logs, memtables, caches, and SSTables.

As we introduce these topics, we also provide references to where you can find their
implementations in the Cassandra source code.

Data Centers and Racks
Cassandra is frequently used in systems spanning physically separate locations. Cas‐
sandra provides two levels of grouping that are used to describe the topology of a
cluster: data center and rack. A rack is a logical set of nodes in close proximity to each
other, perhaps on physical machines in a single rack of equipment. A data center is a
logical set of racks, perhaps located in the same building and connected by reliable
network. A sample topology with multiple data centers and racks is shown in
Figure 6-1.

107

Figure 6-1. Topology of a sample cluster with data centers, racks, and nodes

Out of the box, Cassandra comes with a simple default configuration of a single data
center ("datacenter1") containing a single rack ("rack1"). We’ll learn in Chapter 10
how to build a larger cluster and define its topology.

Cassandra leverages the information you provide about your cluster’s topology to
determine where to store data, and how to route queries efficiently. Cassandra stores
copies of your data in the data centers you request to maximize availability and parti‐
tion tolerance, while preferring to route queries to nodes in the local data center to
maximize performance.

Gossip and Failure Detection
To support decentralization and partition tolerance, Cassandra uses a gossip protocol
that allows each node to keep track of state information about the other nodes in the
cluster. The gossiper runs every second on a timer.

Gossip protocols (sometimes called epidemic protocols) generally assume a faulty net‐
work, are commonly employed in very large, decentralized network systems, and are
often used as an automatic mechanism for replication in distributed databases. They
take their name from the concept of human gossip, a form of communication in
which peers can choose with whom they want to exchange information.

108 | Chapter 6: The Cassandra Architecture

The Origin of Gossip Protocol

The term gossip protocol was originally coined in 1987 by Alan
Demers, a researcher at Xerox’s Palo Alto Research Center, who
was studying ways to route information through unreliable
networks.

The gossip protocol in Cassandra is primarily implemented by the org.apache.cas
sandra.gms.Gossiper class, which is responsible for managing gossip for the local
node. When a server node is started, it registers itself with the gossiper to receive
endpoint state information.

Because Cassandra gossip is used for failure detection, the Gossiper class maintains a
list of nodes that are alive and dead.

Here is how the gossiper works:

1. Once per second, the gossiper will choose a random node in the cluster and initi‐
alize a gossip session with it. Each round of gossip requires three messages.

2. The gossip initiator sends its chosen friend a GossipDigestSyn message.
3. When the friend receives this message, it returns a GossipDigestAck message.
4. When the initiator receives the ack message from the friend, it sends the friend a

GossipDigestAck2 message to complete the round of gossip.

When the gossiper determines that another endpoint is dead, it “convicts” that end‐
point by marking it as dead in its local list and logging that fact.

Cassandra has robust support for failure detection, as specified by a popular algo‐
rithm for distributed computing called Phi Accrual Failure Detector. This manner of
failure detection originated at the Advanced Institute of Science and Technology in
Japan in 2004.

Accrual failure detection is based on two primary ideas. The first general idea is that
failure detection should be flexible, which is achieved by decoupling it from the appli‐
cation being monitored. The second and more novel idea challenges the notion of
traditional failure detectors, which are implemented by simple “heartbeats” and
decide whether a node is dead or not dead based on whether a heartbeat is received
or not. But accrual failure detection decides that this approach is naive, and finds a
place in between the extremes of dead and alive—a suspicion level.

Therefore, the failure monitoring system outputs a continuous level of “suspicion”
regarding how confident it is that a node has failed. This is desirable because it can
take into account fluctuations in the network environment. For example, just because
one connection gets caught up doesn’t necessarily mean that the whole node is dead.
So suspicion offers a more fluid and proactive indication of the weaker or stronger

Gossip and Failure Detection | 109

possibility of failure based on interpretation (the sampling of heartbeats), as opposed
to a simple binary assessment.

Phi Threshold and Accrual Failure Detectors
Accrual failure detectors output a value associated with each process (or node) called
Phi. The Phi value represents the level of suspicion that a server might be down. The
computation of this value is designed to be adaptive in the face of volatile network
conditions, so it’s not a binary condition that simply checks whether a server is up or
down.

The Phi convict threshold in the configuration adjusts the sensitivity of the failure
detector. Lower values increase the sensitivity and higher values decrease it, but not in
a linear fashion. With default settings, Cassandra can generally detect a failed node in
about 10 seconds using this mechanism.

The original paper, “The Phi Accrual Failure Detector”, is by Naohiro Hayashibara et
al.

Failure detection is implemented in Cassandra by the org.apache.cassan

dra.gms.FailureDetector class, which implements the org.apache.cassan

dra.gms.IFailureDetector interface. Together, they allow operations including:

isAlive(InetAddressAndPort)

What the detector will report about a given node’s alive-ness.

interpret(InetAddressAndPort)

Used by the gossiper to help it decide whether a node is alive or not based on the
suspicion level reached by calculating Phi (as described in the Hayashibara et al.
paper).

report(InetAddressAndPort)

When a node receives a heartbeat, it invokes this method.

Snitches
The job of a snitch is to provide information about your network topology so that
Cassandra can efficiently route requests. The snitch will figure out where nodes are in
relation to other nodes. The snitch will determine relative host proximity for each
node in a cluster, which is used to determine which nodes to read and write from.

As an example, let’s examine how the snitch participates in a read operation. When
Cassandra performs a read, it must contact a number of replicas determined by the
consistency level. In order to support the maximum speed for reads, Cassandra
selects a single replica to query for the full object, and asks additional replicas for

110 | Chapter 6: The Cassandra Architecture

https://oreil.ly/jMubA

hash values in order to ensure the latest version of the requested data is returned. The
snitch helps to help identify the replica that will return the fastest, and this is the rep‐
lica that is queried for the full data.

The default snitch (the SimpleSnitch) is topology unaware; that is, it does not know
about the racks and data centers in a cluster, which makes it unsuitable for multiple
data center deployments. For this reason, Cassandra comes with several snitches for
different network topologies and cloud environments, including Amazon EC2, Goo‐
gle Cloud, and Apache Cloudstack.

The snitches can be found in the package org.apache.cassandra.locator. Each
snitch implements the IEndpointSnitch interface. We’ll learn how to select and con‐
figure an appropriate snitch for your environment in Chapter 10.

While Cassandra provides a pluggable way to statically describe your cluster’s topol‐
ogy, it also provides a feature called dynamic snitching that helps optimize the routing
of reads and writes over time. Here’s how it works. Your selected snitch is wrapped
with another snitch called the DynamicEndpointSnitch. The dynamic snitch gets its
basic understanding of the topology from the selected snitch. It then monitors the
performance of requests to the other nodes, even keeping track of things like which
nodes are performing compaction. The performance data is used to select the best
replica for each query. This enables Cassandra to avoid routing requests to replicas
that are busy or performing poorly.

The dynamic snitching implementation uses a modified version of the Phi failure
detection mechanism used by gossip. The badness threshold is a configurable parame‐
ter that determines how much worse a preferred node must perform than the best-
performing node in order to lose its preferential status. The scores of each node are
reset periodically in order to allow a poorly performing node to demonstrate that it
has recovered and reclaim its preferred status.

Rings and Tokens
So far we’ve been focusing on how Cassandra keeps track of the physical layout of
nodes in a cluster. Let’s shift gears and look at how Cassandra distributes data across
these nodes.

Cassandra represents the data managed by a cluster as a ring. Each node in the ring is
assigned one or more ranges of data described by a token, which determines its posi‐
tion in the ring. For example, in the default configuration, a token is a 64-bit integer
ID used to identify each partition. This gives a possible range for tokens from −263 to
263−1. We’ll discuss other possible configurations under “Partitioners” on page 113.

A node claims ownership of the range of values less than or equal to each token and
greater than the last token of the previous node, known as a token range. The node

Rings and Tokens | 111

with the lowest token owns the range less than or equal to its token and the range
greater than the highest token, which is also known as the wrapping range. In this
way, the tokens specify a complete ring. Figure 6-2 shows a notional ring layout
including the nodes in a single data center. This particular arrangement is structured
such that consecutive token ranges are spread across nodes in different racks.

Figure 6-2. Example ring arrangement of nodes in a data center

Data is assigned to nodes by using a hash function to calculate a token for the parti‐
tion key. This partition key token is compared to the token values for the various
nodes to identify the range, and therefore the node, that owns the data. Token ranges
are represented by the org.apache.cassandra.dht.Range class.

To see an example of tokens in action, let’s revisit our user table from Chapter 4. The
CQL language provides a token() function that we can use to request the value of the
token corresponding to a partition key, in this case the last_name:

cqlsh:my_keyspace> SELECT last_name, first_name, token(last_name) FROM user;

 last_name | first_name | system.token(last_name)
-----------+------------+-------------------------
 Rodriguez | Mary | -7199267019458681669
 Scott | Isaiah | 1807799317863611380
 Nguyen | Bill | 6000710198366804598

112 | Chapter 6: The Cassandra Architecture

 Nguyen | Wanda | 6000710198366804598

(5 rows)

As you might expect, we see a different token for each partition, and the same token
appears for the two rows represented by the partition key value “Nguyen.”

Virtual Nodes
Early versions of Cassandra assigned a single token (and therefore by implication, a
single token range) to each node, in a fairly static manner, requiring you to calculate
tokens for each node. Although there are tools available to calculate tokens based on
a given number of nodes, it was still a manual process to configure the ini
tial_token property for each node in the cassandra.yaml file. This also made adding
or replacing a node an expensive operation, as rebalancing the cluster required mov‐
ing a lot of data.

Cassandra’s 1.2 release introduced the concept of virtual nodes, also called vnodes for
short. Instead of assigning a single token to a node, the token range is broken up into
multiple smaller ranges. Each physical node is then assigned multiple tokens. Histori‐
cally, each node has been assigned 256 of these tokens, meaning that it represents 256
virtual nodes (although we’ll discuss possible changes to this value in Chapter 10).
Virtual nodes have been enabled by default since 2.0.

Vnodes make it easier to maintain a cluster containing heterogeneous machines. For
nodes in your cluster that have more computing resources available to them, you can
increase the number of vnodes by setting the num_tokens property in the cassan‐
dra.yaml file. Conversely, you might set num_tokens lower to decrease the number of
vnodes for less capable machines.

Cassandra automatically handles the calculation of token ranges for each node in the
cluster in proportion to their num_tokens value. Token assignments for vnodes are
calculated by the org.apache.cassandra.dht.tokenallocator.ReplicationAware
TokenAllocator class.

A further advantage of virtual nodes is that they speed up some of the more heavy‐
weight Cassandra operations such as bootstrapping a new node, decommissioning a
node, and repairing a node. This is because the load associated with operations on
multiple smaller ranges is spread more evenly across the nodes in the cluster.

Partitioners
A partitioner determines how data is distributed across the nodes in the cluster. As we
learned in Chapter 4, Cassandra organizes rows in partitions. Each row has a parti‐
tion key that is used to identify the partition to which it belongs. A partitioner, then,

Virtual Nodes | 113

is a hash function for computing the token of a partition key. Each row of data is dis‐
tributed within the ring according to the value of the partition key token. As shown
in Figure 6-3, the role of the partitioner is to compute the token based on the parti‐
tion key columns. Any clustering columns that may be present in the primary key are
used to determine the ordering of rows within a given node that owns the token rep‐
resenting that partition.

Figure 6-3. The role of the partitioner

Cassandra provides several different partitioners in the org.apache.cassandra.dht
package (DHT stands for distributed hash table). The Murmur3Partitioner was added
in 1.2 and has been the default partitioner since then; it is an efficient Java implemen‐
tation on the murmur algorithm developed by Austin Appleby. It generates 64-bit
hashes. The previous default was the RandomPartitioner.

Because of Cassandra’s generally pluggable design, you can also create your own par‐
titioner by implementing the org.apache.cassandra.dht.IPartitioner class and
placing it on Cassandra’s classpath. Note, however, that the default partitioner is not
frequently changed in practice, and that you can’t change the partitioner after initial‐
izing a cluster.

Replication Strategies
A node serves as a replica for different ranges of data. If one node goes down, other
replicas can respond to queries for that range of data. Cassandra replicates data across
nodes in a manner transparent to the user, and the replication factor is the number of
nodes in your cluster that will receive copies (replicas) of the same data. If your repli‐
cation factor is 3, then three nodes in the ring will have copies of each row.

114 | Chapter 6: The Cassandra Architecture

The first replica will always be the node that claims the range in which the token falls,
but the remainder of the replicas are placed according to the replication strategy
(sometimes also referred to as the replica placement strategy).

For determining replica placement, Cassandra implements the Gang of Four strategy
pattern, which is outlined in the common abstract class org.apache.cassandra.loca
tor.AbstractReplicationStrategy, allowing different implementations of an algo‐
rithm (different strategies for accomplishing the same work). Each algorithm
implementation is encapsulated inside a single class that extends the AbstractRepli
cationStrategy.

Out of the box, Cassandra provides two primary implementations of this interface
(extensions of the abstract class): SimpleStrategy and NetworkTopologyStrategy.
The SimpleStrategy places replicas at consecutive nodes around the ring, starting
with the node indicated by the partitioner. The NetworkTopologyStrategy allows you
to specify a different replication factor for each data center. Within a data center, it
allocates replicas to different racks in order to maximize availability. The NetworkTo
pologyStrategy is recommended for keyspaces in production deployments, even
those that are initially created with a single data center, since it is more straightfor‐
ward to add an additional data center should the need arise.

Legacy Replication Strategies

A third strategy, OldNetworkTopologyStrategy, is provided for
backward compatibility. It was previously known as the RackAwar
eStrategy, while the SimpleStrategy was previously known as the
RackUnawareStrategy. NetworkTopologyStrategy was previously
known as DataCenterShardStrategy. These changes were effective
in the 0.7 release.

The strategy is set independently for each keyspace and is a required option to create
a keyspace, as we saw in Chapter 4.

Consistency Levels
In Chapter 2, we discussed Brewer’s CAP theorem, in which consistency, availability,
and partition tolerance are traded off against one another. Cassandra provides tunea‐
ble consistency levels that allow you to make these trade-offs at a fine-grained level.
You specify a consistency level on each read or write query that indicates how much
consistency you require. A higher consistency level means that more nodes need to
respond to a read or write query, giving you more assurance that the values present
on each replica are the same.

Consistency Levels | 115

For read queries, the consistency level specifies how many replica nodes must
respond to a read request before returning the data. For write operations, the consis‐
tency level specifies how many replica nodes must respond for the write to be
reported as successful to the client. Because Cassandra is eventually consistent,
updates to other replica nodes may continue in the background.

The available consistency levels include ONE, TWO, and THREE, each of which specify an
absolute number of replica nodes that must respond to a request. The QUORUM consis‐
tency level requires a response from a majority of the replica nodes. This is some‐
times expressed as:

Q = f loor RF/2 + 1

In this equation, Q represents the number of nodes needed to achieve quorum for a
replication factor RF. It may be simpler to illustrate this with a couple of examples: if
RF is 3, Q is 2; if RF is 4, Q is 3; if RF is 5, Q is 3, and so on.

The ALL consistency level requires a response from all of the replicas. We’ll examine
these consistency levels and others in more detail in Chapter 9.

Consistency is tuneable in Cassandra because clients can specify the desired consis‐
tency level on both reads and writes. There is an equation that is popularly used to
represent the way to achieve strong consistency in Cassandra: R + W > RF = strong
consistency. In this equation, R, W, and RF are the read replica count, the write replica
count, and the replication factor, respectively; all client reads will see the most recent
write in this scenario, and you will have strong consistency. As we discuss in more
detail in Chapter 9, the recommended way to achieve strong consistency in Cassan‐
dra is to write and read using the QUORUM or LOCAL_QUORUM consistency levels.

Distinguishing Consistency Levels and Replication Factors

If you’re new to Cassandra, it can be easy to confuse the concepts
of replication factor and consistency level. The replication factor is
set per keyspace. The consistency level is specified per query, by the
client. The replication factor indicates how many nodes you want
to use to store a value during each write operation. The consistency
level specifies how many nodes the client has decided must
respond in order to feel confident of a successful read or write
operation. The confusion arises because the consistency level is
based on the replication factor, not on the number of nodes in the
system.

116 | Chapter 6: The Cassandra Architecture

Queries and Coordinator Nodes
Let’s bring these concepts together to discuss how Cassandra nodes interact to sup‐
port reads and writes from client applications. Figure 6-4 shows the typical path of
interactions with Cassandra.

Figure 6-4. Clients, coordinator nodes, and replicas

A client may connect to any node in the cluster to initiate a read or write query. This
node is known as the coordinator node. The coordinator identifies which nodes are
replicas for the data that is being written or read and forwards the queries to them.

For a write, the coordinator node contacts all replicas, as determined by the consis‐
tency level and replication factor, and considers the write successful when a number
of replicas commensurate with the consistency level acknowledge the write.

For a read, the coordinator contacts enough replicas to ensure the required consis‐
tency level is met, and returns the data to the client.

These, of course, are the “happy path” descriptions of how Cassandra works. In order
to get a full picture of Cassandra’s architecture, we’ll now discuss some of Cassandra’s
high availability mechanisms that it uses to mitigate failures, including hinted hand‐
off and repair.

Queries and Coordinator Nodes | 117

Hinted Handoff
Consider the following scenario: a write request is sent to Cassandra, but a replica
node where the write properly belongs is not available due to network partition,
hardware failure, or some other reason. In order to ensure general availability of the
ring in such a situation, Cassandra implements a feature called hinted handoff. You
might think of a hint as a little Post-it Note that contains the information from the
write request. If the replica node where the write belongs has failed, the coordinator
will create a hint, which is a small reminder that says, “I have the write information
that is intended for node B. I’m going to hang on to this write, and I’ll notice when
node B comes back online; when it does, I’ll send it the write request.” That is, once it
detects via gossip that node B is back online, node A will “hand off ” to node B the
“hint” regarding the write. Cassandra holds a separate hint for each partition that is to
be written.

This allows Cassandra to be always available for writes, and generally enables a clus‐
ter to sustain the same write load even when some of the nodes are down. It also
reduces the time that a failed node will be inconsistent after it does come back online.

In general, hints do not count as writes for the purposes of consistency level. The
exception is the consistency level ANY, which was added in 0.6. This consistency level
means that a hinted handoff alone will count as sufficient toward the success of a
write operation. That is, even if only a hint was able to be recorded, the write still
counts as successful. Note that the write is considered durable, but the data may not
be readable until the hint is delivered to the target replica.

Hinted Handoff and Guaranteed Delivery

Hinted handoff is used in Amazon’s Dynamo, which inspired the
design of databases, including Cassandra and Amazon’s Dyna‐
moDB. It is also familiar to those who are aware of the concept of
guaranteed delivery in messaging systems such as the Java Message
Service (JMS). In a durable guaranteed-delivery JMS queue, if a
message cannot be delivered to a receiver, JMS will wait for a given
interval and then resend the request until the message is received.

There is a practical problem with hinted handoffs (and guaranteed delivery
approaches, for that matter): if a node is offline for some time, the hints can build up
considerably on other nodes. Then, when the other nodes notice that the failed node
has come back online, they tend to flood that node with requests, just at the moment
it is most vulnerable (when it is struggling to come back into play after a failure). To
address this problem, Cassandra limits the storage of hints to a configurable time
window. It is also possible to disable hinted handoff entirely.

118 | Chapter 6: The Cassandra Architecture

As its name suggests, org.apache.cassandra.hints.HintsService is the class that
implements hinted handoffs internally.

Although hinted handoff helps increase Cassandra’s availability, due to the limitations
mentioned it is not sufficient on its own to ensure consistency of data across replicas.

Anti-Entropy, Repair, and Merkle Trees
Cassandra uses an anti-entropy protocol as an additional safeguard to ensure consis‐
tency. Anti-entropy protocols are a type of gossip protocol for repairing replicated
data. They work by comparing replicas of data and reconciling differences observed
between the replicas. Anti-entropy is used in Amazon’s Dynamo, and Cassandra’s
implementation is modeled on that (see Section 4.7 of the Dynamo paper).

Anti-Entropy in Cassandra

In Cassandra, the term anti-entropy is often used in two slightly dif‐
ferent contexts, with meanings that have some overlap:

• The term is often used as a shorthand for the replica synchro‐
nization mechanism for ensuring that data on different nodes
is updated to the newest version.

• At other times, Cassandra is described as having an anti-
entropy capability that includes replica synchronization as well
as hinted handoff.

Replica synchronization is supported via two different modes known as read repair
and anti-entropy repair. Read repair refers to the synchronization of replicas as data is
read. Cassandra reads data from multiple replicas in order to achieve the requested
consistency level, and detects if any replicas have out-of-date values. If an insufficient
number of nodes have the latest value, a read repair is performed immediately to
update the out-of-date replicas. Otherwise, the repairs can be performed in the back‐
ground after the read returns. This design is observed by Cassandra as well as by
straight key-value stores such as Project Voldemort and Riak.

Anti-entropy repair (sometimes called manual repair) is a manually initiated opera‐
tion performed on nodes as part of a regular maintenance process. This type of repair
is executed by using a tool called nodetool, as we’ll learn about in Chapter 12. Run‐
ning nodetool repair causes Cassandra to execute a validation compaction (see
“Compaction” on page 125). During a validation compaction, the server initiates a
TreeRequest/TreeReponse conversation to exchange Merkle trees with neighboring
replicas. The Merkle tree is a hash representing the data in that table. If the trees from
the different nodes don’t match, they have to be reconciled (or “repaired”) to deter‐
mine the latest data values they should all be set to. This tree comparison validation is

Anti-Entropy, Repair, and Merkle Trees | 119

https://oreil.ly/gSRpy

the responsibility of the org.apache.cassandra.service.reads.AbstractReadExe
cutor class.

What’s a Merkle Tree?
A Merkle tree, named for its inventor, Ralph Merkle, is also known as a hash tree. It’s a
data structure represented as a binary tree, and it’s useful because it summarizes in
short form the data in a larger data set. In a hash tree, the leaves are the data blocks
(typically files on a filesystem) to be summarized. Every parent node in the tree is a
hash of its direct child nodes, which tightly compacts the summary.

In Cassandra, the Merkle tree is implemented in the org.apache.cassan

dra.utils.MerkleTree class.

Merkle trees are used in Cassandra to ensure that the peer-to-peer network of nodes
receives data blocks unaltered and unharmed. They are also used in cryptography to
verify the contents of files and transmissions.

Both Cassandra and Dynamo use Merkle trees for anti-entropy, but their implemen‐
tations are a little different. In Cassandra, each table has its own Merkle tree; the tree
is created as a snapshot during a validation compaction, and is kept only as long as is
required to send it to the neighboring nodes on the ring. The advantage of this imple‐
mentation is that it reduces network I/O.

Lightweight Transactions and Paxos
As we discussed in “Consistency Levels” on page 115, Cassandra provides the ability
to achieve strong consistency by specifying sufficiently high consistency levels on
writes and reads. However, strong consistency is not enough to prevent race condi‐
tions in cases where clients need to read, then write data.

To help explain this with an example, let’s revisit our my_keyspace.user table from
Chapter 4. Imagine we are building a client that wants to manage user records as part
of an account management application. In creating a new user account, we’d like to
make sure that the user record doesn’t already exist, lest we unintentionally overwrite
existing user data. So first we do a read to see if the record exists, and then only per‐
form the create if the record doesn’t exist.

The behavior we’re looking for is called linearizable consistency, meaning that we’d
like to guarantee that no other client can come in between our read and write queries
with their own modification. Since the 2.0 release, Cassandra supports a lightweight
transaction (LWT) mechanism that provides linearizable consistency.

120 | Chapter 6: The Cassandra Architecture

Cassandra’s LWT implementation is based on Paxos. Paxos is a consensus algorithm
that allows distributed peer nodes to agree on a proposal, without requiring a leader
to coordinate a transaction. Paxos and other consensus algorithms emerged as alter‐
natives to traditional two-phase commit-based approaches to distributed transactions
(see the note, “The Problem with Two-Phase Commit” on page 9).

The basic Paxos algorithm consists of two stages: prepare/promise and propose/
accept. To modify data, a coordinator node can propose a new value to the replica
nodes, taking on the role of leader. Other nodes may act as leaders simultaneously for
other modifications. Each replica node checks the proposal, and if the proposal is the
latest it has seen, it promises to not accept proposals associated with any prior pro‐
posals. Each replica node also returns the last proposal it received that is still in pro‐
gress. If the proposal is approved by a majority of replicas, the leader commits the
proposal, but with the caveat that it must first commit any in-progress proposals that
preceded its own proposal.

The Cassandra implementation extends the basic Paxos algorithm to support the
desired read-before-write semantics (also known as check-and-set), and to allow the
state to be reset between transactions. It does this by inserting two additional phases
into the algorithm, so that it works as follows:

1. Prepare/Promise
2. Read/Results
3. Propose/Accept
4. Commit/Ack

Thus, a successful transaction requires four round-trips between the coordinator
node and replicas. This is more expensive than a regular write, which is why you
should think carefully about your use case before using LWTs.

More on Paxos

Several papers have been written about the Paxos protocol. One of
the best explanations available is Leslie Lamport’s “Paxos Made
Simple”.

Cassandra’s lightweight transactions are limited to a single partition. Internally, Cas‐
sandra stores a Paxos state for each partition. This ensures that transactions on differ‐
ent partitions cannot interfere with each other.

You can find Cassandra’s implementation of the Paxos algorithm in the package
org.apache.cassandra.service.paxos. These classes are leveraged by the Storage
Service, which we will learn about soon. We discuss LWTs in more detail in Chap‐
ter 9.

Lightweight Transactions and Paxos | 121

https://oreil.ly/pczBj
https://oreil.ly/pczBj

Memtables, SSTables, and Commit Logs
Now let’s take a look inside a Cassandra node at some of the internal data structures
and files, summarized in Figure 6-5. Cassandra stores data both in memory and on
disk to provide both high performance and durability. In this section, we’ll focus on
Cassandra’s storage engine and its use of constructs called memtables, SSTables, and
commit logs to support the writing and reading of data from tables.

Figure 6-5. Internal data structures and files of a Cassandra node

When a node receives a write operation, it immediately writes the data to a commit
log. The commit log is a crash-recovery mechanism that supports Cassandra’s dura‐
bility goals. A write will not count as successful on the node until it’s written to the
commit log, to ensure that if a write operation does not make it to the in-memory
store (the memtable, discussed in a moment), it will still be possible to recover the
data. If you shut down the node or it crashes unexpectedly, the commit log can
ensure that data is not lost. That’s because the next time you start the node, the com‐
mit log gets replayed. In fact, that’s the only time the commit log is read; clients never
read from it.

cqlsh> DESCRIBE KEYSPACE my_keyspace ;

CREATE KEYSPACE my_keyspace WITH replication =
 {'class': 'SimpleStrategy',
 'replication_factor': '1'} AND durable_writes = true;

122 | Chapter 6: The Cassandra Architecture

What Are Durable Writes?

Now that we’ve introduced the concept of the commit log, it’s a
good time for us to demystify a property of a keyspace that we first
noticed in Chapter 3:

cqlsh> DESCRIBE KEYSPACE my_keyspace ;

CREATE KEYSPACE my_keyspace WITH replication =
 {'class': 'SimpleStrategy',
 'replication_factor': '1'} AND durable_writes = true;

The durable_writes property controls whether Cassandra will use
the commit log for writes to the tables in the keyspace. This value
defaults to true, meaning that the commit log will be updated on
modifications. Setting the value to false increases the speed of
writes, but also risks losing data if the node goes down before the
data is flushed from memtables into SSTables.

After it’s written to the commit log, the value is written to a memory-resident data
structure called the memtable. Each memtable contains data for a specific table. In
early implementations of Cassandra, memtables were stored on the JVM heap, but
improvements starting with the 2.1 release have moved some memtable data to native
memory, with configuration options to specify the amount of on-heap and native
memory available. This makes Cassandra less susceptible to fluctuations in perfor‐
mance due to Java garbage collection. Optionally, Cassandra may also write data to in
memory caches, which we’ll discuss in “Caching” on page 125.

When the number of objects stored in the memtable reaches a threshold, the contents
of the memtable are flushed to disk in a file called an SSTable. A new memtable is
then created. This flushing is a nonblocking operation; multiple memtables may exist
for a single table, one current and the rest waiting to be flushed. They typically should
not have to wait very long, as the node should flush them very quickly unless it is
overloaded.

Why Are They Called “SSTables”?

The term “SSTable” originated in Google Bigtable as a compaction
of “Sorted String Table.” Cassandra borrows this term even though
it does not store data as strings on disk.

Each commit log maintains an internal bit flag to indicate whether it needs flushing.
When a write operation is first received, it is written to the commit log and its bit flag
is set to 1. There is only one bit flag per table, because only one commit log is ever
being written to across the entire server. All writes to all tables will go into the same
commit log, so the bit flag indicates whether a particular commit log contains any‐
thing that hasn’t been flushed for a particular table. Once the memtable has been

Memtables, SSTables, and Commit Logs | 123

properly flushed to disk, the corresponding commit log’s bit flag is set to 0, indicating
that the commit log no longer has to maintain that data for durability purposes. Like
regular log files, commit logs have a configurable rollover threshold, and once this
file size threshold is reached, the log will roll over, carrying with it any extant dirty bit
flags.

Once a memtable is flushed to disk as an SSTable, it is immutable and cannot be
changed by the application. Despite the fact that SSTables are compacted, this com‐
paction changes only their on-disk representation; it essentially performs the “merge”
step of a mergesort into new files and removes the old files on success.

Since the 1.0 release, Cassandra has supported the compression of SSTables in order
to maximize use of the available storage. This compression is configurable per table.

All writes are sequential, which is the primary reason that writes perform so well in
Cassandra. No reads or seeks of any kind are required for writing a value to Cassan‐
dra because all writes are append operations. This makes the speed of your disk one
key limitation on performance. Compaction is intended to amortize the reorganiza‐
tion of data, but it uses sequential I/O to do so. So the performance benefit is gained
by splitting; the write operation is just an immediate append, and then compaction
helps to organize for better future read performance. If Cassandra naively inserted
values where they ultimately belonged, writing clients would pay for seeks up front.

On reads, Cassandra will read both SSTables and memtables to find data values, as
the memtable may contain values that have not yet been flushed to disk. Memtables
are implemented by the org.apache.cassandra.db.Memtable class.

Bloom Filters
Bloom filters are used to boost the performance of reads. They are named for their
inventor, Burton Bloom. Bloom filters are very fast, nondeterministic algorithms for
testing whether an element is a member of a set. They are nondeterministic because it
is possible to get a false-positive read from a Bloom filter, but not a false-negative.
Bloom filters work by mapping the values in a data set into a bit array and condens‐
ing a larger data set into a digest string using a hash function. The digest, by defini‐
tion, uses a much smaller amount of memory than the original data would. The filters
are stored in memory and are used to improve performance by reducing the need for
disk access on key lookups. Disk access is typically much slower than memory access.
So, in a way, a Bloom filter is a special kind of key cache.

Cassandra maintains a Bloom filter for each SSTable. When a query is performed, the
Bloom filter is checked first before accessing disk. Because false-negatives are not
possible, if the filter indicates that the element does not exist in the set, it certainly
doesn’t; but if the filter thinks that the element is in the set, the disk is accessed to
make sure.

124 | Chapter 6: The Cassandra Architecture

Bloom filters are implemented by the org.apache.cassandra.utils.BloomFilter
class. Cassandra provides the ability to increase Bloom filter accuracy (reducing the
number of false-positives) by increasing the filter size, at the cost of more memory.
This false-positive chance is tuneable per table.

Other Uses of Bloom Filters

Bloom filters are used in other distributed database and caching
technologies, including Apache Hadoop, Google Bigtable, and the
Squid proxy cache.

Caching
As an additional mechanism to boost read performance, Cassandra provides three
optional forms of caching:

• The key cache stores a map of partition keys to row index entries, facilitating
faster read access into SSTables stored on disk. The key cache is stored on the
JVM heap.

• The row cache caches entire rows and can greatly speed up read access for fre‐
quently accessed rows, at the cost of more memory usage. The row cache is
stored in off-heap memory.

• The chunk cache was added in the 3.6 release to store uncompressed chunks of
data read from SSTable files that are accessed frequently. The chunk cache is
stored in off-heap memory.

• The counter cache was added in the 2.1 release to improve counter performance
by reducing lock contention for the most frequently accessed counters.

By default, key and counter caching are enabled, while row caching is disabled, as it
requires more memory. Cassandra saves its caches to disk periodically in order to
warm them up more quickly on a node restart. We’ll investigate how to tune these
caches in Chapter 13.

Compaction
As we already discussed, SSTables are immutable, which helps Cassandra achieve
such high write speeds. However, periodic compaction of these SSTables is important
in order to support fast read performance and clean out stale data values. A compac‐
tion operation in Cassandra is performed in order to merge SSTables. During com‐
paction, the data in SSTables is merged: the keys are merged, columns are combined,
obsolete values are discarded, and a new index is created.

Caching | 125

Compaction is the process of freeing up space by merging large accumulated data‐
files. This is roughly analogous to rebuilding a table in the relational world. But the
primary difference in Cassandra is that it is intended as a transparent operation that
is amortized across the life of the server.

On compaction, the merged data is sorted, a new index is created over the sorted
data, and the freshly merged, sorted, and indexed data is written to a single new
SSTable (each SSTable consists of multiple files, including Data, Index, and Filter).
This process is managed by the class org.apache.cassandra.db.compaction.Compac
tionManager.

Another important function of compaction is to improve performance by reducing
the number of required seeks. There is a bounded number of SSTables to inspect to
find the column data for a given key. If a key is frequently mutated, it’s very likely that
the mutations will all end up in flushed SSTables. Compacting them prevents the
database from having to perform a seek to pull the data from each SSTable in order to
locate the current value of each column requested in a read request.

When compaction is performed, there is a temporary spike in disk I/O and the size of
data on disk while old SSTables are read and new SSTables are being written.

Cassandra supports multiple algorithms for compaction via the strategy pattern. The
compaction strategy is an option that is set for each table. The compaction strategy
extends the AbstractCompactionStrategy class. The available strategies include:

• SizeTieredCompactionStrategy (STCS) is the default compaction strategy and
is recommended for write-intensive tables.

• LeveledCompactionStrategy (LCS) is recommended for read-intensive tables.
• TimeWindowCompactionStrategy (TWCS) is intended for time series or other‐

wise date-based data.

We’ll revisit these strategies in Chapter 13 to discuss selecting the best strategy for
each table.

One interesting feature of compaction relates to its intersection with incremental
repair. A feature called anticompaction was added in 2.1. As the name implies, anti‐
compaction is somewhat of an opposite operation to regular compaction in that the
result is the division of an SSTable into two SSTables, one containing repaired data,
and the other containing unrepaired data.

The trade-off is that more complexity is introduced into the compaction strategies,
which must handle repaired and unrepaired SSTables separately so that they are not
merged together.

126 | Chapter 6: The Cassandra Architecture

What About Major Compaction?

Users with prior experience may recall that Cassandra exposes an
administrative operation called major compaction (also known as
full compaction) that consolidates multiple SSTables into a single
SSTable. While this feature is still available, the utility of perform‐
ing a major compaction has been greatly reduced over time. In fact,
usage is actually discouraged in production environments, as it
tends to limit Cassandra’s ability to remove stale data. We’ll learn
more about this and other administrative operations on SSTables
available via nodetool in Chapter 12.

Log Structured Merge Trees
The basic design of Cassandra’s storage engine that we’ve described in this chapter is
shared with several other databases modeled after the Google Bigtable paper, which
itself draws inspiration from the 1996 paper by Patrick O’Neil et al., “The Log-
Structured Merge-Tree (LSM-Tree)”.

The LSM-Tree paper describes a data structure proposed as an improvement over the
B-Trees previously dominant in storage design in which data is updated in place. The
basic idea of the design is that data is stored first in memory and then over time is
cascaded, or merged into one or more stages of files on disk using a merge-sort algo‐
rithm. The design was originally intended to take advantage of the fact that sequential
writes to spinning disk are faster than random access, although it works equally well
on modern SSD-based storage.

The Bigtable paper introduced the terms memtable and SSTable for the in-memory
and on-disk components of the pattern, and established common design elements,
including the initial storage of data in memtables, the use of a write-ahead log for
durability, periodic storage of sorted data on disk in immutable SSTables, the use of
memtables and Bloom filters to index into SSTables for fast reads, and compaction as
a background process to consolidate SSTables.

Databases that conform to this pattern are commonly referred to as LSM-Tree data‐
bases and include both simple storage engines such as RocksDB and LevelDB, as well
as distributed databases such as Cassandra and HBase. LSM-Tree databases are
known for their high write throughput due to the append-only storage model. Reads
are not quite as fast but are aided by the use of Bloom filters and SSTable indexes.

Deletion and Tombstones
We’ve already discussed several common distributed system approaches that Cassan‐
dra uses to handle failure gracefully. Another interesting case has to do with deleting
data. Because a node could be down or unreachable when data is deleted, that node

Deletion and Tombstones | 127

https://oreil.ly/xYRvw
https://oreil.ly/xYRvw

could miss a delete. When that node comes back online later and a repair occurs, the
node could “resurrect” the data that had been previously deleted by re-sharing it with
other nodes.

To prevent deleted data from being reintroduced, Cassandra uses a concept called a
tombstone. A tombstone is a marker that is kept to indicate data that has been deleted.
When you execute a delete operation, the data is not immediately deleted. Instead, it’s
treated as an update operation that places a tombstone on the value.

A tombstone is similar to the idea of a “soft delete” from the relational world. Instead
of actually executing a delete SQL statement, the application will issue an update
statement that changes a value in a column called something like “deleted.” Program‐
mers sometimes do this to support audit trails, for example.

Tombstones are not kept forever; instead, they are removed as part of compaction.
There is a setting per table called gc_grace_seconds (Garbage Collection Grace Sec‐
onds), which represents the amount of time that nodes will wait to garbage collect (or
compact) tombstones. By default, it’s set to 864,000 seconds, the equivalent of 10 days.
Cassandra keeps track of tombstone age, and once a tombstone is older than
gc_grace_seconds, it will be garbage collected. The purpose of this delay is to give a
node that is unavailable time to recover; if a node is down longer than this value, then
it should be treated as failed and replaced.

Managers and Services
While we’ve referenced several locations in the Cassandra source code in this chapter,
it’s a good idea to get an overall sense of how the codebase is structured. There is a set
of classes that form Cassandra’s basic internal control mechanisms. We’ve encoun‐
tered a few of them already, including the HintedHandOffManager, the Compaction
Manager, and the StageManager. We’ll present a brief overview of a few other classes
here so that you can become familiar with some of the more important ones. Many of
these expose MBeans via the Java Management Extension (JMX) in order to report
status and metrics, and in some cases to allow configuration and control of their
activities. We’ll learn more about interacting with these MBeans in Chapter 11.

Cassandra Daemon
The org.apache.cassandra.service.CassandraDaemon interface represents the life
cycle of the Cassandra service running on a single node. It includes the typical life
cycle operations that you might expect: start, stop, activate, deactivate, and
destroy.

128 | Chapter 6: The Cassandra Architecture

You can also create an in-memory Cassandra instance programmatically by using the
class org.apache.cassandra.service.EmbeddedCassandraService. Creating an
embedded instance can be useful for unit testing programs using Cassandra.

Storage Engine
Cassandra’s core data storage functionality is commonly referred to as the storage
engine, which consists primarily of classes in the org.apache.cassandra.db package.
The main entry point is the ColumnFamilyStore class, which manages all aspects of
table storage, including commit logs, memtables, SSTables, and indexes.

What’s a Column Family?

Tables were known as column families in early versions of
Cassandra.

A History of Changes to the Storage Engine
The storage engine was largely rewritten for the 3.0 release to bring Cassandra’s in-
memory and on-disk representations of data in alignment with the CQL. An excellent
summary of the changes is provided in the CASSANDRA-8099 Jira issue.

The storage engine rewrite was a precursor for many other changes, most impor‐
tantly, support for materialized views, which was implemented under
CASSANDRA-6477. These two Jira issues make for interesting reading if you want to
better understand the changes required “under the hood” to enable these powerful
new features.

Engineers at Instagram have created a Cassandra fork known as Rocksandra in which
the native storage engine is replaced by RocksDB, with the goal of improving Cassan‐
dra’s tail write latency. Their proposal to define an API to make the storage engine
pluggable is documented as CASSANDRA-13474.

Storage Service
Cassandra wraps the storage engine with a service that is represented by the
org.apache.cassandra.service.StorageService class. The storage service contains
the node’s token, which is a marker indicating the range of data that the node is
responsible for.

The server starts up with a call to the initServer method of this class, upon which
the server registers the thread pools used to manage various tasks, makes some

Managers and Services | 129

https://oreil.ly/iieXt
https://oreil.ly/pkYsW
https://oreil.ly/XiULB

determinations about its state (such as whether it was bootstrapped or not, and what
its partitioner is), and registers an MBean with the JMX server.

Storage Proxy
The org.apache.cassandra.service.StorageProxy sits in front of the StorageSer
vice to handle the work of responding to client requests. It coordinates with other
nodes to store and retrieve data, including storage of hints when needed. The Stora
geProxy also helps manage lightweight transaction processing.

Direct Invocation of the Storage Proxy

Although it is possible to invoke the StorageProxy programmati‐
cally, as an in-memory instance, note that this is not considered an
officially supported API for Cassandra and therefore has under‐
gone changes between releases.

Messaging Service
The purpose of org.apache.cassandra.net.MessagingService is to manage all
inbound and outbound messages from this node to and from other nodes, except for
SSTable streaming, which we’ll examine next. Incoming messages are routed to the
other services referenced in this section for handling. Outgoing messages may
optionally have callbacks, which are invoked when a response is received from the
other node.

4.0 Feature: Asynchronous Internode Messaging

The MessagingService was rewritten for the 4.0 release to make all
of its communications asynchronous using Netty, a nonblocking
I/O client-server framework used to simplify networking for Java
applications.

Stream Manager
Streaming is Cassandra’s optimized way of sending SSTable files from one node to
another via a persistent TCP connection; all other communication between nodes
occurs via serialized messages. Streaming may occur when tokens need to be realloca‐
ted across the cluster, such as when a node is added or removed. Streaming may also
occur during repair processing or when a node is being replaced or rebuilt. We’ll
learn more about these operations in Chapter 12.

The org.apache.cassandra.streaming.StreamManager handles these streaming
messages, including connection management, message compression, progress track‐
ing, and statistics.

130 | Chapter 6: The Cassandra Architecture

Zero-Copy Streaming

Traditionally, SSTables have been streamed one partition at a time.
The Cassandra 4.0 release introduced a zero-copy streaming fea‐
ture to stream SSTables in their entirety using zero-copying APIs of
the host operating system. These APIs allow files to be transferred
over the network without first copying them into the CPU. This
feature is enabled by default and has been estimated to improve
streaming speed by a factor of 5.

CQL Native Transport Server
The CQL Native Protocol is the binary protocol used by clients to communicate with
Cassandra. The org.apache.cassandra.transport package contains the classes that
implement this protocol, including the Server. This native transport server manages
client connections and routes incoming requests, delegating the work of performing
queries to the StorageProxy.

There are several other classes that manage key features of Cassandra. Table 6-1
shows a few to investigate if you’re interested.

Table 6-1. Classes implementing key Cassandra features

Key feature Class
Repair org.apache.cassandra.service.ActiveRepairService

Caching org.apache.cassandra.service.CacheService

Migration org.apache.cassandra.schema.MigrationManager

Materialized views org.apache.cassandra.db.view.ViewManager

Secondary indexes org.apache.cassandra.index.SecondaryIndexManager

Authentication and authorization org.apache.cassandra.auth.PasswordAuthenticator, CassandraAu
thorizer, CassandraRoleManager

System Keyspaces
In true “dogfooding” style, Cassandra makes use of its own storage to keep track of
metadata about the cluster and local node. This is similar to the way in which Micro‐
soft SQL Server maintains the meta-databases master and tempdb. The master is used
to keep information about disk space, usage, system settings, and general server
installation notes; the tempdb is used as a workspace to store intermediate results and
perform general tasks. The Oracle database always has a tablespace called SYSTEM,
used for similar purposes. The Cassandra system keyspaces are used much like these.

Let’s go back to cqlsh and use DESCRIBE TABLES to get a quick overview of the tables
in Cassandra’s system keyspaces:

System Keyspaces | 131

https://oreil.ly/ACmGM
https://oreil.ly/ACmGM

cqlsh> DESCRIBE TABLES;

Keyspace system_traces

events sessions

Keyspace system_schema

tables triggers views keyspaces dropped_columns
functions aggregates indexes types columns

Keyspace system_auth

resource_role_permissons_index network_permissions role_permissions
role_members roles

Keyspace system

repairs view_builds_in_progress paxos
available_ranges prepared_statements size_estimates
batches peers built_views
peer_events_v2 compaction_history local
available_ranges_v2 sstable_activity transferred_ranges
peers_v2 peer_events
"IndexInfo" transferred_ranges_v2

Keyspace system_distributed

repair_history view_build_status parent_repair_history

Seeing Different System Keyspaces?

If you’re using a version of Cassandra prior to 4.0, you may not see
some of these keyspaces listed. The basic system keyspace has been
around since the beginning, but other keyspaces have been added:

• The system_traces keyspace was added in 1.2 to support
request tracing.

• The system_auth and system_distributed keyspaces were
added in 2.2 to support role-based access control (RBAC) and
persistence of repair data, respectively.

• Tables related to schema definition were migrated from sys
tem to the system_schema keyspace in 3.0.

Let’s dig a bit deeper into the contents of Cassandra’s system keyspace:

cqlsh> USE system;

cqlsh:system> DESCRIBE KEYSPACE;

132 | Chapter 6: The Cassandra Architecture

CREATE KEYSPACE system WITH replication =
 {'class': 'LocalStrategy'} AND durable_writes = true;

...

We’ve truncated the output here because it lists the complete structure of each table.
We’ll summarize some of the key tables next. Looking at the first statement in the
output, we see that the system keyspace is using the replication strategy LocalStrat
egy, meaning that this information is intended for internal use and not replicated to
other nodes.

Immutability of the System Keyspaces

Describing the system keyspaces produces similar output to
describing any other keyspace, in that the tables are described using
the CREATE TABLE command syntax. This may be somewhat mis‐
leading in this case, as you cannot modify the schema of these sys
tem keyspaces.

Looking over the contents of the tables in the system keyspace, we see that many of
them are related to the concepts discussed in this chapter:

• Information about the structure of the cluster communicated via gossip is stored
in system.local and system.peers. These tables hold information about the
local node and other nodes in the cluster, including IP addresses, locations by
data center and rack, token ranges, CQL, and protocol versions.

• The system.transferred_ranges and system.available_ranges track token
ranges previously managed by each node and any ranges needing allocation.

• The construction of materialized views is tracked in the sys

tem.view_builds_in_progress and system.built_views tables, resulting in the
views available in system_schema.views.

• User-provided extensions include system_schema.types for user-defined types,
system_schema.triggers for triggers configured per table, system_schema.func
tions for user-defined functions, and system_schema.aggregates for user-
defined aggregates.

• The system.paxos table stores the status of transactions in progress, while the
system.batches table stores the status of batches.

• The system.size_estimates stores the estimated number of partitions per table
and mean partition size.

System Keyspaces | 133

Removal of the system.hints Table

Hinted handoffs have traditionally been stored in the sys

tem.hints table. As thoughtful developers have noted, the fact that
hints are really messages to be kept for a short time and deleted
means this usage is actually an instance of the well-known anti-
pattern of using Cassandra as a queue, which is discussed in Chap‐
ter 5. Hint storage was moved to flat files in the 3.0 release.

Feel free to explore the contents of some of the other system_* keyspaces using the
DESCRIBE KEYSPACE or DESCRIBE TABLE commands:

• The cluster’s definitions of the keyspaces, tables, and indexes are stored by the
system_schema.keyspaces, system_schema.tables, and system_schema.col
umns.

• The system_traces keyspace contains tables that store information about query
traces, which we’ll learn how to view and interpret in Chapter 13.

• The system_auth keyspace contains tables that store information about the users,
roles, and permissions Cassandra uses to provide authentication and authoriza‐
tion features we’ll learn about in Chapter 14.

Summary
In this chapter, we examined the main pillars of Cassandra’s architecture, including
gossip, snitches, partitioners, replication, consistency, anti-entropy, hinted handoff,
and lightweight transactions. We also looked at some of Cassandra’s internal data
structures, including memtables, SSTables, and commit logs, and how Cassandra exe‐
cutes various operations, such as deletion and compaction. Finally, we surveyed some
of the major classes and interfaces, pointing out key points of interest in case you
want to dive deeper into the codebase.

134 | Chapter 6: The Cassandra Architecture

CHAPTER 7

Designing Applications with Cassandra

In the previous chapters you learned how Cassandra represents data, how to create
Cassandra data models, and how Cassandra’s architecture works to distribute data
across a cluster so that you can access it quickly and reliably. Now it’s time to take this
knowledge and start to apply it in the context of real-world application design.

Hotel Application Design
Let’s return to the hotel domain you began working with in Chapter 5. Imagine that
you’ve been asked to develop an application that leverages the Cassandra data models
you created to represent hotels, their room availability, and reservations.

How will you get from a data model to the application? After all, data models don’t
exist in a vacuum. There must be software applications responsible for writing and
reading data from the tables that you design. While you could take many architec‐
tural approaches to developing such an application, we’ll focus in this chapter on the
microservice architectural style.

Cassandra and Microservice Architecture
Over the past several years, the microservice architectural style has been foundational
to the discipline of cloud-native applications. As a database designed for the cloud
from the ground up, Cassandra is a natural fit for cloud-native applications.

We don’t intend to provide a full discussion of the benefits of a microservice architec‐
ture here, but will reference a subset of the principles introduced in Sam Newman’s
book Building Microservices (O’Reilly), an excellent source on this topic:

135

http://shop.oreilly.com/product/0636920033158.do

Encapsulation
Encapsulation could also be phrased as “services that are focused on doing one
thing well” or the “single responsibility principle.”

By contrast, in many enterprises the database serves as a central integration
point. An application might expose interfaces to other applications such as
remote procedure call (RPC) or messaging interfaces, but it’s also common for
one application to access another application’s database directly, which violates
encapsulation and produces dependencies between applications that can be diffi‐
cult to isolate and debug (see Figure 7-1).

Figure 7-1. Integration by database contrasted with microservices

Autonomy
In a microservice architecture, autonomy refers to the ability to independently
deploy each microservice without dependence on any other microservices. This
flexibility has significant advantages in allowing you to independently evolve
portions of a deployed application without downtime, gradually introducing new
versions of a service and minimizing the risk of these deployments.

Another implication of autonomy is that each microservice can have its own data
store using the most appropriate technology for that service. We’ll examine this
flexibility in more detail in “Polyglot persistence” on page 140.

Scalability
Microservice architecture provides a lot of flexibility by giving you the ability to
run more or fewer instances of a service dynamically according to demand. This
allows you to scale different aspects of an application independently.

For example, in a hotel domain there is a large disparity between shopping (the
amount of traffic devoted to looking for hotel rooms) and booking (the much
lower level of traffic associated with customers actually committing to a reserva‐
tion). For this reason, you might expect to scale the services associated with hotel
and inventory data to a higher degree than the services associated with storing
reservations.

136 | Chapter 7: Designing Applications with Cassandra

Microservice Architecture for a Hotel Application
To create a microservice architecture for the hotel application, you’ll need to identify
services, their interfaces, and how they interact. Although it was written well before
microservices became popular, Eric Evans’ book Domain-Driven Design (Addison-
Wesley Professional) has proven to be a useful reference. One of the key principles
Evans articulates is beginning with a domain model and identifying bounded con‐
texts. This process has become a widely recommended approach for identifying
microservices.

In Figure 7-2, you can see some of the key architecture and design artifacts that are
often produced when building new applications. Rather than a strict workflow, these
are presented in an approximate order. The influences between these artifacts are
sometimes sequential or waterfall style, but are more often iterative in nature as
designs are refined.

Figure 7-2. Artifacts produced by architectural and design processes

Use cases and access patterns are user experience (UX) design artifacts that also influ‐
ence the data modeling and software architecture processes. We discussed the special
role of access patterns in Cassandra data modeling in Chapter 5, so let’s focus here on
the interactions between data modeling and software architecture.

To define a microservice architecture, let’s use a process that complements the data
modeling processes you’ve already learned. As you begin to identify entities as part of
a conceptual data modeling phase, you can begin to identify bounded contexts that
represent groupings of related entities. As you progress into logical data modeling,

Hotel Application Design | 137

you’ll refine the bounded contexts in order to identify specific services that will be
responsible for each table (or group of related, denormalized tables). During the final
stage of the design process, you confirm the design of each service, the selection of
database, the physical data models, and actual database schema.

Identifying Bounded Contexts
Let’s see how this high-level process works in practice for your hotel application.
Reusing the conceptual data model from Chapter 5, you might choose to identify a
Hotel Domain encompassing the information about hotels, their rooms and availabil‐
ity, and a Reservation Domain to include information about reservations and guests,
as shown in Figure 7-3. These happen to correspond to the keyspaces identified in
your initial data model.

Figure 7-3. Identifying bounded contexts for a hotel application

Identifying Services
The next step is to formalize the bounded contexts you’ve identified into specific
services that will own specific tables within your logical data model. For example, the
Hotel Domain identified previously might decompose into separate services focused
on hotels, points of interest, and inventory availability, as shown in Figure 7-4.

138 | Chapter 7: Designing Applications with Cassandra

Figure 7-4. Identifying services for hotel data

There are multiple possible designs, but a good general design principle is to assign
tables that have a high degree of correspondence to the same service. In particular,
when working with Cassandra, a natural approach is to assign denormalized tables
representing the same basic data type to the same service.

Services should embody classic object-oriented principles of coupling and cohesion:
there should be a high degree of cohesion or relatedness between tables owned by a
service, and a low amount of coupling or dependence between contexts. The query
arrows on your Chebotko diagrams are helpful here in identifying relationships
between services, whether they are direct invocation dependencies, or data flows
orchestrated through user interfaces or events.

Using the same principles as described here, examine the tables in your logical data
model within the Reservation Domain. You might identify a Reservation Service and
a Guest Service, as shown in Figure 7-5. In many cases there will be a one-to-one
relationship between bounded contexts and services, although with more complex
domains there could be further decomposition into services.

Hotel Application Design | 139

Figure 7-5. Identifying services for reservation data

While the initial design did not specifically identify access patterns for guest data out‐
side of navigating to guest information from a reservation, it’s not a big stretch to
imagine that your business stakeholders will at some point want to allow guests to
create and manage accounts on your application.

Designing Microservice Persistence
The final stage in the data modeling process consists of creating physical data models.
This corresponds to the architectural tasks of designing services, including database-
related design choices such as selecting a database and creating database schema.

Polyglot persistence
One of the benefits of microservice architecture is that each service is independently
deployable. This gives you the ability to select a different database for each microser‐
vice, an approach known as polyglot persistence.

While you might be surprised to read this in a book on Cassandra, it is nonetheless
true that Cassandra may not be the ideal backing store for every microservice, espe‐
cially those that do not require the scalability that Cassandra offers.

Let’s examine the services you’ve identified in the design of your hotel application to
identify some options for polyglot persistence. We’ll summarize these in Table 7-1.

140 | Chapter 7: Designing Applications with Cassandra

Table 7-1. Polyglot persistence example

Service Data characteristics Database options
Hotel Service Descriptive text about hotels and their amenities, changes

infrequently
Document database (i.e., MongoDB),
Cassandra, or Elasticsearch/Solr for full
text search

Point of Interest
Service

Geographic locations and descriptions of points of interest Cassandra or other tabular databases
supporting geospatial indexes such as
DataStax Enterprise

Inventory Service Counts of available rooms by date, large volume of reads
and writes

Cassandra or other tabular databases

Reservation Service Rooms reserved on behalf of guests, lower volume of reads
and writes than inventory

Cassandra or other tabular databases

Guest Service Guest identity and contact information, possible extension
point for customer and fraud analytics systems

Cassandra, graph databases

You might make some of your selections with an eye to future extensibility and scala‐
bility of the system.

Representing other database models in CQL
When choosing to use Cassandra as the primary underlying database across multiple
services, it is still possible to achieve some of the characteristics of other data models
such as key-value models, document models, and graph models:

Key-value models
Key-value models can be represented in Cassandra by treating the key as the par‐
tition key. The remaining data can be stored in a value column as a text or blob
type. It’s recommended not to exceed 5 MB for a single value, so consider break‐
ing up large documents into multiple rows.

Document models
There are two primary approaches in which Cassandra can behave like a docu‐
ment database, one based on having a well-defined schema, and the other
approximating a flexible schema approach. Both involve identifying primary key
columns according to standard Cassandra data modeling practices discussed in
Chapter 5.

The flexible schema approach involves storing nonprimary key columns in a
blob, as in the following table definition:

CREATE TABLE hotel.hotels_document (
 id text PRIMARY KEY,
 document text);

With this design, the document column could contain arbitrary descriptive data
in JavaScript Object Notation (JSON) or some other format, which would be left

Hotel Application Design | 141

to the application to interpret. This could be somewhat error prone and is not a
very elegant solution.

A better approach is to use CQL support for reading and writing data in JSON
format, introduced in Cassandra 2.2. For example, you could insert data into the
hotels table with this query:

cqlsh:hotel> INSERT INTO hotels JSON '{ "id": "AZ123",
 "name": "Super Hotel Suites at WestWorld",
 "phone": "1-888-999-9999",
 "address": {
 "street": "10332 E. Bucking Bronco",
 "city": "Scottsdale",
 "state_or_province": "AZ",
 "postal_code": "85255"
 }
}';

Similarly, you can request data in JSON format from a CQL query. The response
will contain a single text field labeled json that includes the requested columns—
in this case, all of them (note that no formatting is provided for the output):

cqlsh:hotel> SELECT JSON * FROM hotels WHERE id = 'AZ123';

 [json]
--
{ "id": "AZ123", "name": "Super Hotel Suites at WestWorld",
"phone": "1-888-999-9999", "address": {
"street": "10332 E. Bucking Bronco", "city": "Scottsdale",
"state_or_province": "AZ", "postal_code": 85255 }

The INSERT JSON and SELECT JSON commands are particularly useful for web
applications or other JavaScript applications that use JSON representations.
While the ability to read and write data in JSON format does make Cassandra
appear to behave more like a document database, remember that all of the refer‐
enced attributes must be defined in the table schema.

Graph models
Graph data models are a powerful way of representing domains where the rela‐
tionships between entities are as important or more important than the proper‐
ties of the entities themselves. Common graph representations include property
graphs. A property graph consists of vertexes that represent the entities in a
domain, while edges represent the relationships between vertices and can be
navigated in either direction. Both vertices and edges can have properties, hence
the name property graph.

Property graphs between related entities can be represented on top of Cassandra
using an approach in which each vertex type and edge type is stored in a

142 | Chapter 7: Designing Applications with Cassandra

dedicated table. To interact with the graph, applications use a graph query lan‐
guage such as Gremlin or Cypher. Graph databases provide a processing engine
that interprets these queries and executes them, including data access to an
underlying storage layer. DataStax Enterprise is an example of a database that
provides a graph API with Cassandra as the underlying storage layer.

Extending Designs
Anyone who has built and maintained an application of significant size knows that
change is inevitable. Business stakeholders come up with new requirements that
cause you to extend systems.

For example, let’s say your business stakeholder approaches you after your initial
hotel data model to identify additional ways that customers should be able to search
for hotels in your application. You might represent these as additional access patterns,
such as searching for hotels by name, location, or amenities, as shown in Figure 7-6.

Figure 7-6. Additional hotel access patterns

According to the principles you learned in Chapter 5, your first thought might be to
continue the practice of denormalization, creating new tables that will be able to sup‐
port each of these access patterns, as shown in Figure 7-7.

Extending Designs | 143

Figure 7-7. Additional hotel tables

At this point, you now have five different access patterns for hotel data, and it’s rea‐
sonable to begin to ask how many denormalized tables is too many. The correct
answer for your domain is going to depend on several factors, including the volume
of reads and writes, and the amount of data. However, let’s assume in this case that
you’d like to explore some other options besides just automatically adding new tables
to your design.

Cassandra provides two mechanisms that you can use as alternatives to managing
multiple denormalized tables: secondary indexes and materialized views.

Secondary Indexes
If you try to query on a column in a Cassandra table that is not part of the primary
key, you’ll soon realize that this is not allowed. For example, consider the hotels
table, which uses the id as the primary key. Attempting to query by the hotel’s name
results in the following output:

cqlsh:hotel> SELECT * FROM hotels
 WHERE name = 'Super Hotel Suites at WestWorld';
InvalidRequest: Error from server: code=2200 [Invalid query] message=
 "Cannot execute this query as it might involve data filtering and
 thus may have unpredictable performance. If you want to execute this
 query despite the performance unpredictability, use ALLOW FILTERING"

As the error message instructs, you could override Cassandra’s default behavior in
order to force it to query based on this column using the ALLOW FILTERING keyword.
However, the implication of such a query is that Cassandra would need to ask all of
the nodes in the cluster to scan all stored SSTable files for hotels matching the pro‐
vided name, because Cassandra has no indexing built on that particular column. This

144 | Chapter 7: Designing Applications with Cassandra

could yield some undesirable side effects on larger or more heavily loaded clusters,
including query timeouts and additional processing load on your Cassandra nodes.

One way to address this situation without adding an additional table using the hotel’s
name as a primary key is to create a secondary index for the name column. A secon‐
dary index is an index on a column that is not part of the primary key:

cqlsh:hotel> CREATE INDEX ON hotels (name);

You can also give an optional name to the index with the syntax CREATE INDEX
<name> ON…. If you don’t specify a name, cqlsh creates a name automatically accord‐
ing to the form <table name>_<column name>_idx. For example, you can learn the
name of the index you just created using DESCRIBE KEYSPACE:

cqlsh:hotel> DESCRIBE KEYSPACE;
...
CREATE INDEX hotels_name_idx ON hotel.hotels (name);

Now that you’ve created the index, your query will work as expected:

cqlsh:hotel> SELECT id, name FROM hotels
 WHERE name = 'Super Hotel Suites at WestWorld';

 id | name
-------+---------------------------------
 AZ123 | Super Hotel Suites at WestWorld

(1 rows)

You’re not limited just to indexes based only on simple type columns. It’s also possible
to create indexes that are based on user-defined types or values stored in collections.
For example, you might wish to be able to search based on the address column
(based on the address UDT) or the pois column (a set of unique identifiers for
points of interest):

cqlsh:hotel> CREATE INDEX ON hotels (address);
cqlsh:hotel> CREATE INDEX ON hotels (pois);

Note that for maps in particular, you have the option of indexing either the keys (via
the syntax KEYS(addresses)), the values (which is the default), or both (in Cassandra
2.2 or later).

Now let’s look at the resulting updates to the design of hotel tables, taking into
account the creation of indexes on the hotels table as well as the service and updated
keyspace assignments for each table, as shown in Figure 7-8. Note here the assign‐
ment of a keyspace per service, which we’ll discuss more in depth in “Services, Key‐
spaces, and Clusters” on page 153.

Extending Designs | 145

Figure 7-8. Revised hotel physical model

If you change your mind at a later time about these indexes, you can remove them
using the DROP INDEX command:

cqlsh:hotels> DROP INDEX hotels_name_idx;
cqlsh:hotels> DROP INDEX hotels_address_idx;
cqlsh:hotels> DROP INDEX hotels_pois_idx;

146 | Chapter 7: Designing Applications with Cassandra

Secondary Index Pitfalls

Because Cassandra partitions data across multiple nodes, each
node must maintain its own copy of a secondary index based on
the data stored in partitions it owns. For this reason, queries
involving a secondary index typically involve more nodes, making
them significantly more expensive.
Secondary indexes are not recommended for several specific cases:

• Columns with high cardinality. For example, indexing on the
hotel.address column could be very expensive, as the vast
majority of addresses are unique.

• Columns with very low data cardinality. For example, it would
make little sense to index on the user.title column (from
the user table in Chapter 4) in order to support a query for
every “Mrs.” in the user table, as this would result in a massive
row in the index.

• Columns that are frequently updated or deleted. Indexes built
on these columns can generate errors if the amount of deleted
data (tombstones) builds up more quickly than the compac‐
tion process can handle.

For optimal read performance, denormalized table designs or materialized views
(which we’ll discuss in the next section) are generally preferred to using secondary
indexes. However, secondary indexes can be a useful way of supporting queries that
were not considered in the initial data model design.

SASI: A New Secondary Index Implementation
The Cassandra 3.4 release introduced an experimental, alternative implementation of
secondary indexes known as the SSTable Attached Secondary Index (SASI). SASI was
developed by Apple and released as an open source implementation of Cassandra’s
secondary index API. As the name implies, SASI indexes are calculated and stored as
part of each SSTable file, differing from the original Cassandra implementation,
which stores indexes in separate, “hidden” tables.

The SASI implementation exists alongside traditional secondary indexes, and you can
create a SASI index with the CQL CREATE CUSTOM INDEX command:

cqlsh:my_keyspace> CREATE CUSTOM INDEX hotel_name_sasi_idx
 ON hotels (name)
 USING 'org.apache.cassandra.index.sasi.SASIIndex'
 WITH OPTIONS= {'mode': 'CONTAINS'};

SASI indexes do offer functionality beyond the traditional secondary index imple‐
mentation, such as the ability to do inequality (greater than or less than) searches on

Extending Designs | 147

indexed columns. You can also use the CQL LIKE keyword to do text searches against
indexed columns. For example, you could use the following query to find hotels
whose name contains the substring “world” (case insensitive):

cqlsh:hotel> SELECT id, name FROM hotels
 WHERE name LIKE '%world%';

 id | name
-------+---------------------------------
 AZ123 | Super Hotel Suites at WestWorld

(1 rows)

While SASI indexes do perform better than traditional indexes by eliminating the
need to read from additional tables, they still require reads from a greater number of
nodes than a denormalized design.

Materialized Views
Materialized views were introduced to help address some of the shortcomings of sec‐
ondary indexes that we’ve discussed. Creating indexes on columns with high cardin‐
ality tends to result in poor performance, because most or all of the nodes in the ring
are queried.

Materialized views address this problem by storing preconfigured views that support
queries. Each materialized view supports queries based on a single column that is not
part of the original primary key. Materialized views simplify application development:
instead of the application having to keep multiple denormalized tables in sync, Cas‐
sandra takes on the responsibility of updating views in order to keep them consistent
with the base table.

Materialized views incur a performance impact on writes to the base table because
some reads are required to maintain this consistency. However, materialized views
demonstrate more efficient performance compared to managing denormalized tables
in application clients. Internally, materialized view updates are implemented using
batching, which we will discuss in Chapter 9.

As you work with physical data model designs, you will want to consider whether to
manage the denormalization manually or use Cassandra’s materialized view
capability.

The design shown for the reservation keyspace in Figure 5-9 uses both approaches.
The reservations_by_hotel_date and reservations_by_guest are represented as
regular tables, and reservations_by_confirmation as a materialized view on the
reservations_by_hotel_date table. We’ll discuss the reasoning behind this design
choice momentarily.

148 | Chapter 7: Designing Applications with Cassandra

Similar to secondary indexes, materialized views are created on existing tables. To
understand the syntax and constraints associated with materialized views, let’s take a
look at a CQL command that creates the reservations_by_confirmation table from
the reservation physical model as a materialized view:

cqlsh> CREATE MATERIALIZED VIEW reservation.reservations_by_confirmation
 AS SELECT *
 FROM reservation.reservations_by_hotel_date
 WHERE confirm_number IS NOT NULL and hotel_id IS NOT NULL and
 start_date IS NOT NULL and room_number IS NOT NULL
 PRIMARY KEY (confirm_number, hotel_id, start_date, room_number);

The order of the clauses in the CREATE MATERIALIZED VIEW command can appear
somewhat inverted, so let’s walk through these clauses in an order that is a bit easier
to process.

The first parameter after the command is the name of the materialized view—in this
case, reservations_by_confirmation. The FROM clause identifies the base table for
the materialized view, reservations_by_hotel_date.

The PRIMARY KEY clause identifies the primary key for the materialized view, which
must include all of the columns in the primary key of the base table. This restriction
keeps Cassandra from collapsing multiple rows in the base table into a single row in
the materialized view, which would greatly increase the complexity of managing
updates.

The grouping of the primary key columns uses the same syntax as an ordinary table.
The most common usage is to place the additional column first as the partition key,
followed by the base table primary key columns, used as clustering columns for pur‐
poses of the materialized view.

The WHERE clause provides support for filtering. Note that a filter must be specified for
every primary key column of the materialized view, even if it is as simple as designat‐
ing that the value IS NOT NULL.

The AS SELECT clause identifies the columns from the base table that you want your
materialized view to contain. You can reference individual columns, but in this case
the wildcard * indicates that all columns will be part of the view.

Extending Designs | 149

Enhanced Materialized View Capabilities

The initial implementation of materialized views in the 3.0 release
has some limitations on the selection of primary key columns and
filters. There are several Jira issues currently in progress to add
capabilities, such as multiple nonprimary key columns in material‐
ized view primary keys, CASSANDRA-9928, or using aggregates in
materialized views, CASSANDRA-9778. If you’re interested in
these features, track the Jira issues to see when they will be included
in a release.

Now that you have a better understanding of the design and use of materialized
views, let’s revisit the reservation physical design. Specifically, reservations_by_con
firmation is a good candidate for implementation as a materialized view due to the
high cardinality of the confirmation numbers—after all, you can’t get any higher car‐
dinality than a unique value per reservation.

Here is the schema for this materialized view:

CREATE MATERIALIZED VIEW reservation.reservations_by_confirmation AS
SELECT * FROM reservation.reservations_by_hotel_date
WHERE confirm_number IS NOT NULL and hotel_id IS NOT NULL and
start_date IS NOT NULL and room_number IS NOT NULL
PRIMARY KEY (confirm_number, hotel_id, start_date, room_number);

An alternate design would be to use reservations_by_confirmation as the base
table and reservations_by_hotel_date as a materialized view. However, because
you cannot create a materialized view with multiple nonprimary key columns from
the base table, this would have required you to designate either hotel_id or date as a
clustering column in reservations_by_confirmation. Both designs might be
acceptable based on the anticipated amount of data, but this should give some insight
into the trade-offs you’ll want to consider in selecting which of several denormalized
table designs to use as the base table.

An updated physical data model reflecting the design of tables used by the Reserva‐
tion Service and Guest Service is shown in Figure 7-9. In this view, the contents of the
reservations_by_confirmation table are shown in italics to indicate it is a material‐
ized view based on reservations_by_hotel_date.

150 | Chapter 7: Designing Applications with Cassandra

https://oreil.ly/yVlBi
https://oreil.ly/6J7ix

Figure 7-9. Revised Reservation physical model

Experimental Features
Materialized views were a major selling point of the Cassandra 3.0 release and drove a
number of significant design changes under the hood, such as the new storage engine
we’ll discuss in Chapter 9. However, there were several rough edges and some corner
cases that were not well handled in the initial implementation.

While there have been significant improvements on these issues in releases in the 3.X
series, the Cassandra community has clarified the process for introducing new fea‐
tures entailing significant architectural change. These new features will now be desig‐
nated as experimental features and disabled by default. Enabling an experimental
feature will require a change in the cassandra.yaml file.

Other experimental features include the SASI indexes discussed earlier as well as
transient replicas, a feature introduced in Cassandra 4.0 as a cost-saving measure for
extremely large clusters. You’ll learn more about transient replicas in Chapter 9.

Extending Designs | 151

Reservation Service: A Sample Microservice
So far, you’ve learned how a microservice architecture is a natural fit for using Cas‐
sandra, identified candidate services for a hotel application, and considered how ser‐
vice design might influence your Cassandra data models. The final subject to examine
is the design of individual microservices.

Design Choices for a Java Microservice
Let’s narrow the focus to the design of a single service: the Reservation Service. As
we’ve discussed, the Reservation Service will be responsible for reading and writing
data using the tables in the reservation keyspace.

A candidate design for a Java implementation of the Reservation Service using popu‐
lar libraries and frameworks is shown in Figure 7-10. This implementation uses
Apache Cassandra for its data storage via the DataStax Java Driver and the Spring
Boot project for managing the service life cycle. It exposes a RESTful API docu‐
mented via Swagger.

Figure 7-10. Reservation Service Java design

The Reservation Service Java implementation can be found on this GitHub site. The
goal of this project is to provide a minimally functional implementation of a Java
microservice using the DataStax Java Driver that can be used as a reference or start‐
ing point for other applications. We’ll be referencing this source code in Chapter 8 as
we examine the functionality provided by the various DataStax drivers.

152 | Chapter 7: Designing Applications with Cassandra

https://github.com/jeffreyscarpenter/reservation-service

Deployment and Integration Considerations
As you proceed into implementation, there are a couple of factors you’ll want to con‐
sider related to how the service will be deployed and integrated with other services
and supporting infrastructure.

Services, Keyspaces, and Clusters
First, you’ll want to consider the relationship of services to keyspaces. A good rule of
thumb is to use a keyspace per service to promote encapsulation. You’ll learn about
Cassandra’s access control features in Chapter 14 that allow you to create a database
user per keyspace, such that each service can be easily configured to have exclusive
read and write access to all of the tables in its associated keyspace.

Next, you’ll want to consider whether a given service will have its own dedicated Cas‐
sandra cluster or share a cluster with other services. Figure 7-11 depicts a shared
deployment in which Reservation and Inventory Services are using a shared cluster
for data storage.

Figure 7-11. Service mapping to clusters

Companies that use both microservice architectures and Cassandra at large scale,
such as Netflix, are known to use dedicated clusters per service. The decision of how
many clusters to use will depend on the workload of each service. A flexible approach
is to use a mix of shared and dedicated clusters, in which services that have lower
demand share a cluster, while services with higher demand are deployed with their
own dedicated cluster. Sharing a cluster across multiple services makes sense when
the usage patterns of the services do not conflict.

Deployment and Integration Considerations | 153

Data Centers and Load Balancing
A second consideration is the selection of data centers where each service will be
deployed. The corresponding cluster for a service should also have nodes in each data
center where the service will be deployed, to enable the fastest possible access.
Figure 7-12 shows a sample deployment across two data centers. The service instan‐
ces should be made aware of the name of the local data center. The keyspace used by a
service will need to be configured with a number of replicas to be stored per data cen‐
ter, assuming the NetworkTopologyStrategy is the replication strategy in use.

Figure 7-12. Multiple data center deployment

As you will learn in Chapter 8, most of these options, such as keyspace names, data‐
base access credentials, and cluster topology, can be externalized from application
code into configuration files that can be more readily changed. Even so, it’s wise to
begin thinking about these choices in the design phase.

Interactions Between Microservices
One question that arises when developing microservices that manage related types is
how to maintain data consistency between the different types. If you want to main‐
tain strict ownership of data by different microservices, how can you maintain a con‐
sistency relationship for data types owned by different services? Cassandra does not
provide a mechanism to enforce transactions across table or keyspace boundaries.
But this problem is not unique to Cassandra, since you’d have a similar design chal‐
lenge whenever you need consistency between data types managed by different serv‐
ices, regardless of the backing store.

Let’s look at the hotel application for an example. Given the separate services to man‐
age inventory and reservation data, how do you ensure that the inventory records are
correctly updated when a customer makes a reservation? Two common approaches to
this challenge are shown in Figure 7-13.

154 | Chapter 7: Designing Applications with Cassandra

Figure 7-13. Service integration patterns

The approach on the left side is to create a Booking Service to help coordinate the
changes to reservation and inventory data. This is an instance of a technique known
as orchestration, often seen in architectures that distinguish between so-called CRUD
services (responsible for creating, reading, updating, and deleting a specific data type)
and services that implement business processes. In this example, the Reservation and
Inventory Services are more CRUD services, while the Booking Service implements
the business process of booking a reservation, reserving inventory, and possibly other
activities such as notifying the customer and hotel.

An alternative approach is depicted on the right side of the figure, in which a message
queue or streaming platform such as Apache Kafka is used to create a stream of data
change events that can be consumed asynchronously by other services and applica‐
tions. For example, the Inventory Service might choose to subscribe to events related
to reservations published by the Reservation Service in order to make corresponding
adjustments to inventory. Because there is no central entity orchestrating these
changes, this approach is instead known as choreography. We’ll examine integrating
Cassandra with Kafka and other complementary technologies in more detail in Chap‐
ter 15.

It’s important to note that both orchestration and choreography can exhibit the trade‐
offs between consistency, availability, and partition tolerance discussed in Chapter 2,
and will require careful planning to address error cases such as service and infra‐
structure failures. While a detailed treatment of these approaches, including error-
handling scenarios, is beyond scope here, techniques and technologies are available to
address error cases such as service failure and data inconsistency. These include:

Deployment and Integration Considerations | 155

• Using a distributed transaction framework to coordinate changes across multiple
services and databases. This can be a good approach when strong consistency is
required. Scalar DB is an interesting library for implementing distributed ACID
transactions that is built using Cassandra’s lightweight transactions as a locking
primitive.

• Using a distributed analytics tool such as Apache Spark to check data for consis‐
tency as a background processing task. This approach is useful as a backstop for
catching data inconsistencies caused by software errors, in situations in which
there is tolerance for temporary data inconsistencies.

• A variant of the event-based choreography approach is to leverage the change
data capture (CDC) feature of a database as the source of events, rather than rely‐
ing on a service to reliably persist data to a database and then post an event. This
approach is typically used to guarantee highly consistent interactions at the inter‐
face between applications, although it could be used between individual services.

KillrVideo: A Reference Application for Video Sharing
The DataStax Developer Relations team and other contributors have created a video-
sharing application called KillrVideo. KillrVideo is an open source reference applica‐
tion built using features of Apache Cassandra and DataStax Enterprise, including
Search and Graph. It uses a microservice architecture, providing another example of
the design principles discussed here. You can download the source on GitHub and
run your own copy of the application.

Summary
In this chapter, we’ve looked at why Cassandra is a natural fit within a microservice-
style architecture, and discussed how to ensure your architecture and data modeling
processes can work together. We examined techniques for putting Cassandra-based
services in context of other data models. Now that we have examined the design of a
particular microservice architecture, we’re ready to dive into the details of imple‐
menting applications using Cassandra.

156 | Chapter 7: Designing Applications with Cassandra

https://oreil.ly/4WSZt
http://www.killrvideo.com
https://github.com/killrvideo

CHAPTER 8

Application Development with Drivers

Now that we’ve looked at how to design a microservice architecture for a hotel appli‐
cation, let’s look at how you might implement one of the services within that applica‐
tion—the Reservation Service. To write an application using Cassandra, you’re going
to need a driver, and thankfully you are in good hands.

You’re likely used to connecting to relational databases using drivers. For example, in
Java, JDBC is an API that abstracts the vendor implementation of the relational data‐
base to present a consistent way of storing and retrieving data using Statements, Pre
paredStatements, ResultSets, and so forth. To interact with the database, you get a
driver that works with the particular database you’re using, such as Oracle, SQL
Server, or MySQL; the implementation details of this interaction are hidden from the
developer.

There are a number of client drivers available for Cassandra as well, including sup‐
port for most popular languages. There are benefits to these clients, in that you can
easily embed them in your own applications, and that they frequently offer more fea‐
tures than the CQL native interface does, including connection pooling and JMX
integration and monitoring. In the following sections, you’ll learn about the various
clients available and the features they offer.

Hector, Astyanax, and Other Legacy Clients
In the early days of Cassandra, the community produced a number of client drivers
for different languages. These contributions were a key enabler of Cassandra adop‐
tion. We’ll mention a few of these clients here to pay tribute:

• Hector was one of the first Cassandra clients. Hector provided a simple Java
interface that helped many early developers avoid the challenges of writing to the
Thrift API, and served as the inspiration for several other drivers.

157

https://oreil.ly/rmoJP

• Astyanax was a Java client originally built by Netflix on top of the Thrift API as a
logical successor to the Hector driver. This driver helped many users transition
from Thrift to CQL. The project was retired in 2016.

• Other clients included Pycassa for Python, Perlcassa for Perl, Helenus for
Node.js, and Cassandra-Sharp for the Microsoft .NET framework and C#. Most
of these clients are no longer actively maintained, as they were based on the now-
removed Thrift interface.

This Apache Cassandra page has a comprehensive list of both current and legacy
drivers.

DataStax Java Driver
The introduction of CQL was the impetus for a major shift in the landscape of Cas‐
sandra client drivers. The simplicity and familiar syntax of CQL made the develop‐
ment of client programs similar to traditional relational database drivers. DataStax
made a strategic investment of open source drivers for Java and several additional
languages in order to fuel Cassandra adoption. These drivers quickly became the de
facto standard for new development projects.

Focusing on the Java Driver

The DataStax Java Driver is the oldest and most popular driver, and
typically the driver in which new features appear first. For this rea‐
son, in this book we’ll focus on using the Java driver and use this as
an opportunity to learn about the features that are provided by the
DataStax drivers across multiple languages.

You can access the drivers as well as additional connectors and tools at https://
github.com/datastax. Visit the driver matrix page to access documentation and iden‐
tify driver versions that are compatible with your server version.

Development Environment Configuration
First, you’ll need to access the driver in your development environment. You could
download the driver directly from the URL listed and manage the dependencies man‐
ually, but it is more typical in modern Java development to use a tool like Maven or
Gradle to manage dependencies. If you’re using Maven, you’ll need to add something
like the following to your project pom.xml file, while specifying a value for the driver
version:

<dependency>
 <groupId>com.datastax.oss</groupId>
 <artifactId>java-driver-core</artifactId>

158 | Chapter 8: Application Development with Drivers

https://oreil.ly/EakEz
https://oreil.ly/XaTY-
https://github.com/datastax
https://github.com/datastax
https://oreil.ly/6pPmY

 <version>${driver.version}</version>
</dependency>

You can find information in the online documentation manuals for the Java drivers,
as well as for the documentation for Javadoc for the Java driver. Alternatively, the Jav‐
adocs are also part of the source distribution.

All of the DataStax drivers are managed as open source projects on GitHub. If you’re
interested in seeing the Java driver source, you can get a read-only trunk version
using this command:

$ git clone https://github.com/datastax/java-driver.git

If you’re interested in learning more about the internals of the driver, or even poten‐
tially contributing to the project, the DataStax documentation site also has a devel‐
oper guide.

Driver API Changes

The 4.0 release of the Java driver included significant breaking
changes to the API and configuration of the driver in order to sim‐
plify application development and discourage configurations con‐
trary to best practices. This book conforms to the newer APIs. The
“Clients” chapter in the second edition of this book remains a good
resource for those using the Java Driver 3.x and earlier.
In September 2019, DataStax announced a significant change to its
strategy for drivers for all languages. Prior to that point, DataStax
had maintained separate open source and enterprise drivers for use
with Apache Cassandra and DataStax Enterprise, respectively. In
early 2020, the codebases for the drivers in each of the supported
languages were merged, bringing the benefits of several perfor‐
mance and availability improvements that were previously only
available to DSE customers. DSE-specific driver features are out of
the scope of this book, but are well documented on the sites we’ve
referenced.
DataStax Drivers also support the ability to connect to clusters run‐
ning in Astra, the Cassandra-as-a-Service provided by DataStax.

Connecting to a Cluster
Once you’ve configured your environment, it’s time to start coding. We’ll base the
code samples for this chapter around the Reservation Service, a microservice imple‐
mentation based on the hotel data model introduced in Chapter 5, and the corre‐
sponding application design discussed in Chapter 7. The source code for the
Reservation Service is available at https://github.com/jeffreyscarpenter/reservation-
service.

DataStax Java Driver | 159

https://oreil.ly/evJRW
https://oreil.ly/znyF2
https://oreil.ly/VeR6N
https://oreil.ly/VeR6N
https://oreil.ly/KA9RY
https://oreil.ly/KA9RY
https://github.com/jeffreyscarpenter/reservation-service
https://github.com/jeffreyscarpenter/reservation-service

To start building your application, you’ll use the driver’s API to connect to a cluster.
In the Java driver, connectivity to a cluster is represented by the com.data
stax.oss.driver.api.core.CqlSession class.

The CqlSession class is the main entry point of the driver. It supports a fluent-style
API using the builder pattern. For example, the following line creates a CqlSession
that will attempt to connect to a Cassandra node on the local host at the default Cas‐
sandra native protocol port number:

CqlSession cqlSession = CqlSession.builder()
 .addContactPoint(new InetSocketAddress("127.0.0.1", 9042))
 .build()

Elimination of the Cluster Object

Many versions of DataStax drivers support the concept of a Clus
ter object used to create Session objects. The 4.0 Java driver and
later combine Cluster and Session into CqlSession.

In the terminology of the driver, the nodes you explicitly identify when creating a
CqlSession are known as contact points. Contact points are similar to the concept of
seed nodes that a Cassandra node uses to connect to other nodes in the same cluster.

The minimum required information to create a CqlSession is a single contact point.
The driver defaults to a single contact point consisting of the local host and default
port, so this statement is equivalent to the previous one (unless you are using file-
based configuration, as we describe in “File-based configuration” on page 172):

CqlSession cqlSession = CqlSession.builder().build()

While this configuration is useful for development, when you might be running a
Cassandra node on your local machine, for production environments you’ll want to
specify multiple contact points. This is a good practice in case one of the nodes you
pick happens to be down when the client application is attempting to create a CqlSes
sion. You’ll also need to specify the name of the local data center. We’ll discuss nam‐
ing data centers in Chapter 10.

CqlSession cqlSession = CqlSession.builder()
 .addContactPoint(new InetSocketAddress("<some IP address>", 9042))
 .addContactPoint(new InetSocketAddress("<another IP address>", 9042))
 .withLocalDatacenter("<data center name>")
 .build()

When you create a CqlSession, the driver connects to one of the configured contact
points to obtain metadata about the cluster. This action will throw a NoHostAvaila
bleException if none of the contact points is available, or an AuthenticationExcep
tion if authentication fails. We’ll discuss authentication in more detail in Chapter 14.

160 | Chapter 8: Application Development with Drivers

You can optionally provide the name of a keyspace to connect to, as in this example
that connects to the reservation keyspace:

CqlSession cqlSession = CqlSession.builder()
 .addContactPoint(new InetSocketAddress("<some IP address>", 9042))
 .addContactPoint(new InetSocketAddress("<another IP address>", 9042))
 .withKeyspace("reservation")
 .build()

If you do not specify a keyspace name when creating the CqlSession, you’ll have to
qualify every table reference in your queries with the appropriate keyspace name.

Each CqlSession manages connections to a Cassandra cluster, which are used to exe‐
cute queries and control operations using the Cassandra native protocol. The CqlSes
sion contains a pool of TCP connections for each host.

Sessions Are Expensive

Because a CqlSession maintains TCP connections to multiple
nodes, it is a relatively heavyweight object. In most cases, you’ll
want to create a single CqlSession and reuse it throughout your
application, rather than continually building up and tearing down
CqlSessions. Another acceptable option is to create a CqlSession
per keyspace, if your application is accessing multiple keyspaces.

Statements
Once you have created a CqlSession to connect to a cluster, you’re ready to perform
reads or writes. To begin doing some real application work, you’ll create and execute
CQL statements using implementations of Statement. Statement is an interface with
several implementations, including SimpleStatement, BoundStatement, and Batch
Statement.

The simplest way to create and execute a statement is to call the CqlSession.exe
cute() operation with a string representing the statement. Here’s an example of a
statement that will return the entire contents of the reservations table:

cqlSession.execute("SELECT * from reservation.reservations_by_confirmation");

This statement creates and executes a query in a single method call. In practice, this
could turn out to be a very expensive query to execute in a large database, but it does
serve as a useful example of a very simple query. Most queries will be more complex,
as you’ll have search criteria to specify, or specific values to insert. You can certainly
use Java’s various string utilities to build up the syntax of your query by hand, but
this, of course, is error prone. It may even expose your application to injection attacks
if you’re not careful to sanitize strings that come from end users.

DataStax Java Driver | 161

https://oreil.ly/RvcVY
https://oreil.ly/BKmdd

Simple Statements
Thankfully, the DataStax drivers make it easy to create parameterized statements.
Let’s see how to do this with the Java driver’s SimpleStatement class. As it turns out,
the execute() operation is a convenience method for creating a SimpleStatement.
The previous code is equivalent to the following, using the SimpleStatement.newIn
stance() method:

cqlSession.execute(SimpleStatement.newInstance(
 "SELECT * from reservation.reservations_by_confirmation"));

The newInstance() is most useful in cases where you already have a set query string.
Let’s try building a query with variable parameters using a SimpleStatementBuilder.
Here’s an example of a statement that will insert a row in the reservations table,
which you can then execute:

SimpleStatement reservationInsert = SimpleStatement.builder(
 "INSERT INTO reservations_by_confirmation (confirm_number, hotel_id,
 start_date, end_date, room_number, guest_id) VALUES (?, ?, ?, ?, ?, ?)")
 .addPositionalValue("RS2G0Z")
 .addPositionalValue("NY456")
 .addPositionalValue("2020-06-08")
 .addPositionalValue("2020-06-10")
 .addPositionalValue(111)
 .addPositionalValue("1b4d86f4-ccff-4256-a63d-45c905df2677")
 .build();
cqlSession.execute(reservationInsert);

The first parameter to the call is the basic syntax of your query, indicating the table
and columns you are interested in. The question marks are used to indicate values
that you’ll be providing in additional parameters. You use simple strings to hold the
values of columns such as the reservation ID, hotel ID, start and end dates, room
number and guest ID, and an integer value for the room number.

If you’ve created your statement correctly, the insert will execute successfully (and
silently). Now let’s create another statement to read back the row you just inserted:

SimpleStatement reservationSelect = SimpleStatement.builder(
 "SELECT * FROM reservations_by_confirmation WHERE confirm_number=?")
 .addPositionalValue("RS2G0Z")
 .build();
ResultSet reservationSelectResult = cqlSession.execute(reservationSelect);

Again, you make use of parameterization to provide the ID for the search. This time,
when you execute the query, make sure to receive the ResultSet that is returned
from the execute() method. You can iterate through the rows returned by the
ResultSet as follows:

for (Row row : reservationSelectResult) {
 System.out.format("confirm_number: %s, hotel_id: %, start_date: %s,

162 | Chapter 8: Application Development with Drivers

https://oreil.ly/edwN_

 end_date %s, room_number: %i, guest_id: %s\n",
 row.getString("confirm_number"), row.getString("hotel_id"),
 row.getLocalDate("start_date"), row.getLocalDate("end_date"),
 row.getInt("room_number"), row.getUuid("guest_id"));
}

This code uses the ResultSet.iterator() option to get an Iterator over the rows
in the result set and loop over each row, printing out the desired column values. Note
that you use special accessors to obtain the value of each column, depending on the
desired type—in this case, Row.getString(), getInt(), and getUuid(). As you
might expect, this will print out a result such as:

confirm_number: RS2G0Z, hotel_id: NY456, start_date: 2020-06-08,
 end_date: 2020-06-10, room_number: 111, guest_id:
 1b4d86f4-ccff-4256-a63d-45c905df2677

Of course, you typically will set columns to values you receive as variables, rather
than the hardcoded value used here. You can find code samples for working with Sim
pleStatements on the simple-statement-solution branch of the Reservation Ser‐
vice repository.

Prepared Statements
While SimpleStatements are quite useful for creating ad hoc queries, most applica‐
tions tend to perform the same set of queries repeatedly. The PreparedStatement is
designed to handle these queries more efficiently. The structure of the statement is
sent to nodes a single time for preparation, and a handle for the statement is
returned. To use the prepared statement, only the handle and the parameters need to
be sent. Prepared statements are a core CQL feature supported by all DataStax
drivers.

As you’re building your application, you’ll typically create PreparedStatements for
reading data, corresponding to each access pattern you derive in your data model,
plus others for writing data to your tables to support those access patterns.

Let’s create some PreparedStatements to represent the same reservation queries as
before, using the CqlSession.prepare() operation:

PreparedStatement reservationInsertPrepared = cqlSession.prepare(
 "INSERT INTO reservations_by_confirmation (confirm_number, hotel_id,
 start_date, end_date, room_number, guest_id) VALUES (?, ?, ?, ?, ?, ?)");

PreparedStatement reservationSelectPrepared = cqlSession.prepare(
 "SELECT * FROM reservations_by_confirmation WHERE confirm_number=?");

Note that the PreparedStatement uses the same parameterized syntax used earlier for
the SimpleStatement. A key difference, however, is that a PreparedStatement is not
a subtype of Statement. This prevents the error of trying to pass an unbound

DataStax Java Driver | 163

https://oreil.ly/ACGHk

PreparedStatement to the CqlSession to execute. Note that there is also a variant of
CqlSession.prepare() that accepts a parameterized SimpleStatement as input.

Let’s take a step back and discuss what is happening behind the scenes of the CqlSes
sion.prepare() operation:

• The driver passes the contents of your PreparedStatement to a Cassandra node
and gets back a unique identifier for the statement. This unique identifier is refer‐
enced when you create a BoundStatement. If you’re curious, you can actually see
this reference by calling PreparedStatement.getId().

• Once the driver prepares the statement on one node, it proceeds to prepare the
statement on the other nodes in the cluster. Nodes keep track of prepared state‐
ments internally. In earlier releases, prepared statements were stored in a cache,
but beginning with the 3.10 release, each Cassandra node stores prepared state‐
ments in a local table so that they are present if the node goes down and comes
back up.

• The driver also provides the advanced.prepared-statements.reprepare-on-up
configuration options; this is primarily useful if your cluster is using a release
prior to Cassandra 3.10. If re-preparation is enabled (the default), the driver will
re-prepare statements on nodes that have come back up.

• If the driver tries to execute a PreparedStatement on a node where it has not
been prepared, the driver automatically prepares the statement, at the cost of an
additional round trip between the driver and the node.

You can think of a PreparedStatement as a template for creating queries. In addition
to specifying the form of your query, there are other attributes that you can set on a
PreparedStatement that will be used as defaults for statements it is used to create,
including a default consistency level, retry policy, and tracing.

In addition to improving efficiency, PreparedStatements also improve security by
separating the query logic of CQL from the data. This provides protection against
injection attacks, which attempt to embed commands into data fields in order to gain
unauthorized access.

Bound statement

Now your PreparedStatement is available to use to create queries. In order to make
use of a PreparedStatement, you bind it with actual values by calling the bind()
operation. For example, you can bind the SELECT statement created earlier as follows:

BoundStatement reservationSelectBound = reservationSelectPrepared.bind("RS2G0Z");

The bind() operation used here allows you to provide values that match each vari‐
able in the PreparedStatement. It is possible to provide the first n bound values, in

164 | Chapter 8: Application Development with Drivers

which case the remaining values must be bound separately before executing the state‐
ment. There is also a version of bind() that takes no parameters, in which case all of
the parameters must be bound separately. There are several set() operations pro‐
vided by BoundStatement that can be used to bind values of different types. For
example, you can take the INSERT prepared statement from earlier and bind the val‐
ues using the setString() operation:

BoundStatement reservationInsertBound = reservationInsertPrepared.bind()
 .setString("confirm_number", "RS2G0Z")
 .setString("hotel_id", "NY456")
 .setLocalDate("start_date", "2020-06-08")
 .setLocalDate("end_date", "2020-06-10")
 .setShort(111)
 .setUuid("1b4d86f4-ccff-4256-a63d-45c905df2677")

Once you have bound all of the values, execute a BoundStatement using CqlSes
sion.execute(). If you have failed to bind any of the values, they will be ignored on
the server side, if protocol v4 (Cassandra 3.0 or later) is in use. The driver behavior
for older protocol versions is to throw an IllegalStateException if there are any
unbound values.

You can find code samples for working with PreparedStatement and BoundState
ment on the prepared-statement-solution branch of the Reservation Service
repository.

Query Builder
The DataStax Java driver provides a unique feature not supported in other drivers
called the QueryBuilder, which uses a fluent-style API for creating queries program‐
matically. This is especially useful for cases where there is variation in the query
structure (such as optional parameters) that would make using PreparedStatements
difficult. Similar to PreparedStatement, it also provides some protection against
injection attacks.

To use the QueryBuilder, you’ll need to include an additional dependency, for exam‐
ple, in a Maven POM file:

<dependency>
 <groupId>com.datastax.oss</groupId>
 <artifactId>java-driver-query-builder</artifactId>
 <version>${driver.version}</version>
</dependency>

The QueryBuilder provides a set of static methods to facilitate building different
types of statements represented by different classes. The common usage is to import
the static methods of the QueryBuilder class:

import static com.datastax.oss.driver.api.querybuilder.QueryBuilder.*;

DataStax Java Driver | 165

Importing methods statically improves code readability, as you’ll see as you look at
some examples.

The QueryBuilder produces objects that implement the com.data

stax.oss.driver.api.querybuilder.BuildableQuery interface and its sub-
interfaces, such as Select, Insert, Update, Delete, and others. The methods on these
interfaces return objects that represent the content of a query as it is being built up.
You’ll likely find your IDE quite useful in helping to identify the allowed operations
as you’re building queries.

Let’s reproduce the queries from before using the QueryBuilder to see how it works.
First, build a CQL INSERT query:

Insert reservationInsert =
 insertInto("reservation", "reservations_by_confirmation")
 .value("confirm_number", "RS2G0Z")
 .value("hotel_id", "NY456")
 .value("start_date", "2020-06-08")
 .value("end_date", "2020-06-10")
 .value("room_number", 111)
 .value("guest_id", "1b4d86f4-ccff-4256-a63d-45c905df2677");

SimpleStatement reservationInsertStatement = reservationInsert.build();

The first operation calls the QueryBuilder.insertInto() operation to create an
Insert statement for the reservations_by_confirmation table. Then use the
Insert.value() operation repeatedly to specify values for each column you are
inserting. The Insert.build() operation returns a SimpleStatement you can then
pass to CqlSession.execute().

The construction of the CQL SELECT command is similar:

Select reservationSelect =
 selectFrom("reservation", "reservations_by_confirmation")
 .all()
 .whereColumn("confirm_number").isEqualTo("RS2G0Z");

SimpleStatement reseravationSelectStatement = reservationSelect.build();

For this query, call QueryBuilder.selectFrom() to create a Select statement. You
use the Select.all() operation to select all columns, although you could also have
used the column() operation to select specific columns. Add a CQL WHERE clause via
the Select.whereColumn() operation, to which you pass the name of the column and
then add an equality check for the confirmation number, using the isEqualTo()
operation.

This sample demonstrates how you can use the QueryBuilder to create a Prepared
Statement instead of a SimpleStatement, using the concept of a bind marker as a
placeholder for a value to be specified when the PreparedStatement is bound:

166 | Chapter 8: Application Development with Drivers

Select reservationSelect =
 selectFrom("reservation", "reservations_by_confirmation")
 .all()
 .whereColumn("confirm_number").isEqualTo(bindMarker());

PreparedStatement reservationSelectPrepared =
 cqlSession.prepare(reservationSelect.build());

// later
SimpleStatement reservationSelectStatement =
 reservationSelectPrepared.bind("RS2G0Z");

For a complete code sample using the QueryBuilder, see the query-builder-
solution branch of the Reservation Service repository.

Object Mapper
You’ve learned several techniques for creating and executing query statements with
the driver. There is one final technique to look at that provides a bit more abstraction.
The DataStax drivers for Java, Python, and Node.js provide object mappers that allow
you to focus on developing and interacting with domain models (or data types used
on APIs).

The Java driver’s object mapper works off of annotations in source code that are used
to map Java classes to tables or user-defined types (UDTs). The object mapper is a
useful tool for abstracting the details of interacting with Cassandra, especially if you
have an existing domain model.

The mapper is provided in two separate libraries for use at compile time and runtime,
so you will need to include additional Maven dependencies in order to use the map‐
per in your project. You’ll add the following dependency to the compile path of your
application:

<dependency>
 <groupId>com.datastax.oss</groupId>
 <artifactId>java-driver-mapper-processor</artifactId>
 <version>${driver.version}</version>
</dependency>

You’ll also add the runtime library as a runtime dependency:

<dependency>
 <groupId>com.datastax.oss</groupId>
 <artifactId>java-driver-mapper-runtime</artifactId>
 <version>${driver.version}</version>
</dependency>

The mapper API is based on standard design patterns for data access, including entity
classes and Data Access Objects (DAOs). You create an entity class to represent each
table in your design, a DAO interface to specify queries on entities, and a mapper

DataStax Java Driver | 167

interface that helps generate DAO instances. The mapper generates code based on the
classes and interfaces you provide.

For a complete example of using the mapper, you’ll want to look at the mapper-
solution branch of the Reservation Service repository. We’ll share some of the high‐
lights here. Let’s begin by creating a ReservationsByConfirmation entity class that
will represent rows in the reservations_by_confirmation table:

import com.datastax.oss.driver.api.mapper.annotations.Entity;
import com.datastax.oss.driver.api.mapper.annotations.PartitionKey;
import com.datastax.oss.driver.api.mapper.annotations.NamingStrategy;
import static com.datastax.oss.driver.api.mapper.entity.naming.NamingConvention.
 SNAKE_CASE_INSENSITIVE;

@Entity
@NamingStrategy(convention = SNAKE_CASE_INSENSITIVE)
public class ReservationsByConfirmation {

 @PartitionKey
 private String confirmNumber;

 private String hotelId;
 private LocalDate startDate;
 private LocalDate endDate;
 private short roomNumber;
 private UUID guestId;

 // constructors, get/set methods, hashcode, equals
}

There are several annotations used in this example. The class is denoted as an
@Entity, and also as having a @NamingStrategy, which is a way of specifying how the
mapper should correlate Java identifiers to CQL. For example, you can specify a
SNAKE_CASE_INSENSITIVE convention as in the preceding code, which means that the
mapper will convert Java-style class and member names to lowercase, with under‐
scores separating words, which is the recommended CQL naming style. Thus the
class name ReservationsByConfirmation will be mapped to the reserva

tions_by_confirmation table, the confirmNumber member will be mapped to the
confirm_number column, and so on.

The Reservation Service uses an additional entity class ReservationsByHotelDate
that is used with the reservations_by_hotel_date table. Its implementation is quite
similar, so we won’t reproduce it here.

You can also create entity classes corresponding to UDTs. If your domain model con‐
tains classes that reference other classes, you can annotate the referenced classes as
user-defined types with the @Entity annotation. The object mapper processes objects
recursively using your annotated types.

168 | Chapter 8: Application Development with Drivers

Next, you’ll create a DAO interface to represent queries on these entity classes:

import com.datastax.oss.driver.api.core.PagingIterable;
import com.datastax.oss.driver.api.mapper.annotations.*;

@Dao
public interface ReservationDao {

 @SelectReservationsByConfirmation
 findByConfirmationNumber(
 String confirmNumber);

 @Query("SELECT * FROM ${tableId}")
 PagingIterable<ReservationsByConfirmation> findAll();

 @Insert
 void save(ReservationsByConfirmation reservationsByConfirmation);

 @Delete
 void delete(ReservationsByConfirmation reservationsByConfirmation);

 @Select (customWhereClause = "hotel_id = :hotelId AND start_date = :date")
 PagingIterable<ReservationsByHotelDate> findByHotelDate(
 @CqlName("hotel_id") String hotelId,
 @CqlName("start_date") LocalDate date);

 @Insert
 void save(ReservationsByHotelDate reservationsByHotelDate);

 @Delete
 void delete(ReservationsByHotelDate reservationsByHotelDate);
}

The ReservationDao interface is annotated as @Dao, and the various queries are
marked with annotations such as @Select, @Insert, @Delete, and @Query.

The next step is to create a Mapper interface that can be used to obtain DAO
instances:

import com.datastax.oss.driver.api.mapper.annotations.DaoFactory;
import com.datastax.oss.driver.api.mapper.annotations.Mapper;

@Mapper
public interface ReservationMapper {

 @DaoFactory
 ReservationDao reservationDao();

}

Annotate the interface with @Mapper, and each operation that returns a DAO with
@DaoFactory. When you compile the application, the object mapper interprets your

DataStax Java Driver | 169

annotations to create a ReservationMapperBuilder class that you can invoke to
obtain an implementation of ReservationMapper interface that wraps the CqlSes
sion, and from there obtain an object implementing the ReservationDao interface:

ReservationMapper reservationMapper =
 new ReservationMapperBuilder(cqlSession).build();

ReservationDao reservationDao = reservationMapper.reservationDao();

Since the mapper and DAO objects are using your CqlSession, you should reuse
them just as you do the CqlSession.

Now you can use the ReservationDao to perform queries using your entity classes.
Create a ReservationsByConfirmation object using a simple constructor that you
can save using the DAO:

ReservationsByConfirmation reservation = new ReservationsByConfirmation(
 "RS2G0Z", "NY456", "2020-06-08", "2020-06-10", 111,
 UUID.fromString("1b4d86f4-ccff-4256-a63d-45c905df2677"));

reservationDao.save(reservation);

You can use the java.util.UUID.fromString() operation here for convenience; in
most applications, the value would have been passed in via a remote invocation.

The Mapper.save() operation is all you need to execute to perform a CQL INSERT or
UPDATE, as these are really the same operation to Cassandra. The ReservationDao
builds and executes the statement on your behalf.

To retrieve a specific reservation, use the ReservationDao.findByConfirmationNum
ber() operation, passing in an argument list that matches the partition key:

ReservationsByConfirmation reservation =
 reservationDao.findByConfirmationNumber("RS2G0Z");

Deleting a reservation is also straightforward:

reservationDao.delete(reservation);

The object mapper documentation describes more advanced features, including DAO
methods that execute asynchronously, the ability to configure CQL statement options
such as TTL or consistency level, and customizing how the mapper handles annota‐
tions.

Asynchronous Execution
The CqlSession.execute() operation is synchronous, which means that it blocks
until a result is obtained or an error occurs, such as a network timeout. The driver
also provides the asynchronous executeAsync() operation to support non-blocking

170 | Chapter 8: Application Development with Drivers

https://oreil.ly/7dRQb

interactions with Cassandra. These non-blocking requests can make it simpler to
send multiple queries in parallel to speed performance of your client application.

You could take any of the Statements from the preceding examples and execute them
asynchronously:

CompletionStage<AsyncResultSet> resultStage = cqlSession.executeAsync(statement);

As of the 4.0 release of the DataStax Java driver, the result of executeAsync() and
other asynchronous methods is of the type CompletionStage type introduced in Java
8. (Previous versions in the 3.x series relied on the ListenableFuture interface from
Google’s Guava framework.) The CompletionStage represents a stage of a computa‐
tion. These stages can be chained together so that when a stage completes, other
dependent stages are triggered.

With the Java driver, the asynchronous APIs can be used to assemble processing
chains consisting of CQL queries and code that processes their results. Consider a
chain in which the results of a SELECT query are used as inputs to perform a second
query. In this example, you might load a reservation you wish to delete from the res
ervations_by_confirmation table in a preliminary selectStage, in order to obtain
the primary key columns you can then use to delete the reservation from the reserva
tions_by_hotel_date table in a subsequent deleteStage:

// Load the reservation by confirmation number
CompletionStage<AsyncResultSet> selectStage = session.executeAsync(
 "SELECT * FROM reservations_by_confirmation WHERE
 confirm_number=RS2G0Z");

// Use fields of the reservation to delete from other table
CompletionStage<AsyncResultSet> deleteStage =
 selectStage.thenCompose(
 resultSet -> {
 Row reservationRow = resultSet.one();
 return session.executeAsync(SimpleStatement.newInstance(
 "DELETE FROM reservations_by_hotel_date WHERE hotel_id = ? AND
 start_date = ? AND room_number = ?",
 reservationRow.getString("confirm_number"),
 reservationRow.getLocalDate("start_date"),
 reservationRow.getInt("room_number"));
 });

// Check results for success
deleteStage.whenComplete(
 (resultSet, error) -> {
 if (error != null) {
 System.out.printf("Failed to delete: %s\n", error.getMessage());
 } else {
 System.out.println("Delete successful");
 }

DataStax Java Driver | 171

We simplified this for readability, as you might wish to use prepared statements, or
take advantage of a batch to delete from the reservations_by_confirmation and
reservations_by_hotel_date tables at the same time.

In addition to the CqlSession.executeAsync() operation, the driver supports sev‐
eral other asynchronous operations, including CqlSession.closeAsync(), CqlSes
sion.prepareAsync(), and several operations on the object mapper. You can also
build the CqlSession asynchronously using CqlSessionBuilder.buildAsync(). For
more information, see the Java driver’s asynchronous programming documentation.

Reactive Style Programming

If you’re interested in even more advanced asynchronous program‐
ming in Java, you may be familiar with reactive streams, an initia‐
tive to provide asynchronous stream processing with non-blocking
back pressure. Reactive streams APIs became an official part of the
Java platform in JDK 9 under the java.util.concurrent.Flow.*
interfaces.
Beginning with the 4.4 release, the Java driver provides built-in
support for reactive queries. The CqlSession interface extends a
new ReactiveSession interface, which adds methods such as exe
cuteReactive() to process queries expressed as reactive streams.
To learn more about these APIs, see the Java driver reactive streams
documentation.

Driver Configuration
You’ve already looked at a few of the available options for configuring the Java driver,
but now let’s take a step back and look at its overall configuration approach.

File-based configuration
While all of the DataStax drivers support the configuration options listed in this sec‐
tion via their API, the Java driver also supports a file-based configuration approach.
File-based configuration is based on the Typesafe Config project, an open source
library that provides configuration for JVM languages. In most cases it is preferable
to use configuration values based on a configuration file rather than programmatic
statements. For example, the configuration values provided previously could be speci‐
fied in a configuration file such as the one provided for the Reservation Service:

datastax-java-driver {
 basic {
 contact-points = ["127.0.0.1:9042", "127.0.0.2:9042"]
 session-keyspace = reservation
 }
}

172 | Chapter 8: Application Development with Drivers

https://oreil.ly/jGaIy
http://www.reactive-streams.org/
https://oreil.ly/LGabZ
https://oreil.ly/LGabZ
https://oreil.ly/F9Lae

The configuration file here is written in the Human-Optimized Config Object Nota‐
tion (HOCON) format. The Java driver uses the conventions of the Typesafe Config
library for configuration file locations; it searches the Java classpath for files named
application.conf, application.json, or application.properties. The configuration loader is
a pluggable interface that you can override to create your own implementation.

Basic configuration options

The Java driver divides configuration values into two categories: basic configuration
values that are customized most frequently, and advanced configuration values that
are used less frequently. The basic options include the following:

• Contact points and keyspace name, as discussed previously
• A session-name that will be used in log messages and metrics (if none is pro‐

vided, they will be generated in the form s1, s2, and so on for each distinct
CqlSession created)

• The config-reload-interval that specifies how often configuration values will
be reloaded from the file (defaults to 5 minutes)

• Default parameters applied to each request, including the request.timeout, the
request.consistency (consistency level), and the request.page-size, which
determines how many rows will be retrieved at a time for larger queries

• The load-balancing-policy, which we’ll discuss in in the next section

You can configure advanced options on a CqlSession, including query execution,
connection management, security, logging, and metrics. We’ll examine several of
these options in later sections. The DataStax documentation provides a reference
configuration file, which is an excellent resource for learning about all of the available
configuration options.

Load balancing
As discussed in Chapter 6, a query can be made to any node in a cluster, which is then
known as the coordinator node for that query. Depending on the contents of the
query, the coordinator may communicate with other nodes in order to satisfy the
query. If a client directs all of its queries at the same node, this will produce an unbal‐
anced load on the cluster, especially if other clients are doing the same.

To get around this issue, the driver provides a pluggable mechanism that will balance
the query load across multiple nodes. Load balancing is implemented by selecting an
implementation of this interface:

com.datastax.oss.driver.api.core.loadbalancing.LoadBalancingPolicy

DataStax Java Driver | 173

https://oreil.ly/QtmsK
https://oreil.ly/dPEIA
https://oreil.ly/dPEIA
https://oreil.ly/dPEIA

Each LoadBalancingPolicy must provide a distance() operation to classify each
node in the cluster as local, remote, or ignored, according to the HostDistance enu‐
meration. The driver prefers interactions with local nodes and maintains more con‐
nections to local nodes than remote nodes. The other key operation is
newQueryPlan(), which returns a list of nodes in the order they should be queried.
The LoadBalancingPolicy interface also contains operations that are used to inform
the policy when nodes are added or removed, or go up or down. These operations
help the policy avoid including down or removed nodes in query plans.

Versions of the Java driver through the 3.x series provided multiple LoadBalancingPo
licy implementations with a composable API that allowed a custom selection of
behaviors. Beginning with the 4.0 release, the DataStax Java Driver ships with a single
default LoadBalancingPolicy to simplify the developer experience. This default
implementation reflects an opinionated point of view based on best practices
observed from many deployments, including the following behaviors:

Round-robin queries
The policy allocates requests across the nodes in the cluster in a repeating pattern
to spread the processing load (equivalent to the RoundRobinPolicy from the leg‐
acy driver).

Token awareness
Whenever you use a PreparedStatement, the policy uses the token value of the
partition key in order to select a node that is a replica for the desired data, thus
minimizing the number of nodes that must be queried (equivalent to the TokenA
warePolicy from the legacy driver).

Data center awareness
The policy requires setting a local data center. The default load balancing policy
will only include nodes in the local data center as part of its query plans. The
local data center must be identified explicitly when building the CqlSession via
the withLocalDataCenter() operation, or via the configuration property
basic.load-balancing-policy.local-datacenter.

This is a difference from the legacy driver, which provided a DCAwareRoundRobin
Policy that would include remote nodes in query plans after local nodes. This
was intended as a reliability mechanism in case all replicas in the local data center
were unavailable. In practice, however, if all the replicas in a local data center are
down, it is typically a broader outage at the data center level, and shifting traffic
to other nodes has proven to have undesirable side effects and be difficult to
debug.

174 | Chapter 8: Application Development with Drivers

Should you wish to set a different default LoadBalancingPolicy, you may specify it
when building a CqlSession via the withLoadBalancingPolicy() operation, or by
configuring the properties in the basic.load-balancing-policy group.

Retrying failed queries
When Cassandra nodes fail or become unreachable, the driver automatically and
transparently tries other nodes, and schedules reconnection to the dead nodes in the
background according to the configured reconnection policy. The reconnection policy
is determined according to the advanced.reconnection-policy configuration
options. Two reconnection policies are provided: the ExponentialReconnectionPo
licy and the ConstantReconnectionPolicy.

Because temporary changes in network conditions can also make nodes appear off‐
line, the driver also provides a mechanism to retry queries that fail due to protocol or
network-related errors. This removes the need to write retry logic in client code.

The driver retries failed queries according to the provided implementation of the
com.datastax.oss.driver.api.core.retry.RetryPolicy interface. The onReadTi
meout(), onWriteTimeout(), and onUnavailable() operations define the behavior
that should be taken when a query fails with protocol- or network-related exceptions
ReadTimeoutException, WriteTimeoutException, or UnavailableException,
respectively. The onErrorResponse() operation describes the behavior for handling
other recoverable server errors, and onRequestAborted() operation handles cases in
which the driver aborts a request before the server responds.

The RetryPolicy operations return a RetryDecision, which indicates whether the
query should be retried, and if so, at what consistency level. If the exception is not
retried, it can be rethrown or ignored, in which case the query operation will return
an empty ResultSet.

The 4.0 release of the driver provides a single opinionated implementation of the
RetryPolicy based on best practices. Releases through 3.x had a FallthroughRetry
Policy that never recommended retries, and a DowngradingConsistencyRetryPo
licy that downgrades the consistency level required on retries, as an attempt to get
the query to succeed. The issue with the DowngradingConsistencyRetryPolicy was:
if you are willing to accept a downgraded consistency level under some circumstan‐
ces, do you really require a higher consistency level for the general case?

The RetryPolicy implementation can be overridden using the advanced.retry-
policy configuration.

DataStax Java Driver | 175

https://oreil.ly/5SekC
https://oreil.ly/A_W-3

Speculative execution
While it’s great to have a retry mechanism that automates the response to network
timeouts, you don’t often have the luxury of being able to wait for timeouts or even
long garbage collection pauses. To speed things up, the driver provides a speculative
execution feature. If the original coordinator node for a query fails to respond in a
predetermined interval, the driver can preemptively start an additional execution of
the query against a different coordinator node. When one of the queries returns, the
driver provides that response and cancels any other outstanding queries.

Speculative execution is disabled by default via the NoSpeculativeExecutionPolicy,
but can be enabled on a CqlSession by setting the ConstantSpeculativeExecution
Policy. Here’s an example of how you configure this policy in the configuration file
by specifying a maximum number of executions and a constant delay between execu‐
tions (in milliseconds):

advanced.speculative-execution-policy {
 class = ConstantSpeculativeExecutionPolicy
 max-executions = 3
 delay = 100 milliseconds
}

You may create your own policy by implementing the com.data

stax.oss.driver.api.core.specex.SpeculativeExecutionPolicy interface.

Connection pooling
Because the CQL native protocol is asynchronous, it allows multiple simultaneous
requests per connection; the maximum is 128 simultaneous requests in protocol v2,
while v3 and later allow up to 32,768 simultaneous requests. Because of this larger
number of simultaneous requests, fewer connections per node are required. In fact,
the default is a single connection per node.

Connection pool settings are configurable via the advanced.connection configura‐
tion options, including the number of connections to use for local and remote hosts,
and the maximum number of simultaneous requests per connection (defaults to
1,024). While the v4 driver does not provide the ability to scale the number of con‐
nections up and down as with previous versions, you can adjust these settings by
updating the configuration file, and the changes will be applied at the next time the
configuration file is reloaded.

The driver uses a connection heartbeat to make sure that connections are not closed
prematurely by intervening network devices. This defaults to 30 seconds but can be
overridden using the advanced.heartbeat configuration options.

176 | Chapter 8: Application Development with Drivers

https://oreil.ly/al3ic
https://oreil.ly/al3ic
https://oreil.ly/zUY-B

Protocol version
The driver supports multiple versions of the CQL native protocol. Cassandra 4.0 uses
CQL protocol version 5, while Cassandra 3.X releases support version 4.

By default, the driver negotiates the protocol version when establishing connections,
even correctly handling connections to mixed clusters in which multiple versions of
Cassandra are in use. You can force a protocol version using the advanced.proto
col.version configuration option.

Compression
The driver provides the option of compressing messages between your client and
Cassandra nodes according to the compression options supported by the CQL native
protocol. Enabling compression reduces network bandwidth consumed by the driver,
at the cost of additional CPU usage for the client and server.

Currently there are two compression algorithms available: LZ4 and SNAPPY. The com‐
pression defaults to NONE but can be overridden by setting the advanced.proto
col.compression configuration property.

Driver security
The driver provides a pluggable authentication mechanism that can be used to sup‐
port a simple username/password login, or integration with other authentication
systems. By default, no authentication is performed. An authentication provider
can be selected by passing an implementation of the com.data

stax.oss.driver.api.core.auth.AuthProvider interface, such as the PlainTex
tAuthProvider to the CqlSessionBuilder.withAuthProvider() operation, or by
setting the advanced.auth-provider section in your configuration file. You can con‐
figure the PlainTextAuthProvider and provide your username and password by
using the CqlSessionBuilder.withAuthCredentials() operation.

The driver can also encrypt its communications with the server to ensure privacy.
Client-server encryption options are specified by each node in its cassandra.yaml file.
The driver complies with the encryption settings specified by each node.

We’ll examine authentication, authorization, and encryption from both the client and
server perspective in more detail in Chapter 14.

Execution profiles
While some of the configuration values that you’ve learned can be overridden on
individual Statements, many of them cannot. So what can you do when the configu‐
ration values chosen are appropriate for some of your queries, but not others? The
driver allows you to create execution profiles, which are settings of configuration val‐

DataStax Java Driver | 177

https://oreil.ly/6xq3d

ues that can be applied to individual Statements as an overlay over the default con‐
figuration. To learn which configuration options can be set in a profile, see the
reference configuration file.

For example, let’s say your default settings include a request timeout of one second
and a consistency level of LOCAL_QUORUM. You could create an execution profile to use
with requests that you want to give a stronger consistency by adding this to the pro
files section of the configuration file:

datastax-java-driver {
 profiles {
 long_request {
 basic.request.timeout = 3 seconds
 basic.request.consistency = QUORUM
 }
}

Then, you can apply the values to a Statement:

statement.setExecutionProfileName("long_request");

There is also a setExecutionProfileName() operation available when using the Sim
pleStatementBuilder. Or, if you create a PreparedStatement from a SimpleState
ment (using CqlSession.prepare()), any execution profile you have set will be
inherited by any BoundStatements created from the PreparedStatement.

Metadata
To access the cluster metadata, invoke the CqlSession.getMetadata() method,
which returns an object implementing the com.data

stax.oss.driver.api.core.metadata.Metadata interface. This object provides
information about the cluster at a snapshot in time, including the nodes in the cluster,
the tokens assigned to each node, and the schema, including keyspaces and tables.

Node discovery

A CqlSession maintains a control connection to the first node it connects with, which
it uses to maintain information on the state and topology of the cluster. Using this
connection, the driver will discover all the nodes currently in the cluster, and you can
obtain this information through the Metadata.getNodes() operation, which returns
a list of com.datastax.oss.driver.api.core.metadata.Node objects to represent
each node. You can view the state of each node through the Node.getState()
operation, or you can register an implementation of the com.data

stax.oss.driver.api.core.metadata.NodeStateListener interface to receive call‐
backs when nodes are added or removed from the cluster, or when they are up or
down. This state information is also viewable in the driver logs, which we’ll discuss
shortly.

178 | Chapter 8: Application Development with Drivers

https://oreil.ly/E6vbD
https://oreil.ly/WCYDb

Schema access

The Metadata class also allows the client to learn about the schema in a cluster,
including operations that provide descriptions of individual keyspaces and tables.
The schema version in use in a cluster can change over time as keyspaces and tables
are created, altered, and deleted.

We discussed Cassandra’s support for eventual consistency at great length in Chap‐
ter 2. Because schema information is itself stored using Cassandra, it is also eventu‐
ally consistent, and as a result it is possible for different nodes to have temporarily
different versions of the schema. The driver has internal safeguards to check for
schema agreement before initiating any statement that would change the schema. The
driver provides a notification mechanism for clients to learn about schema changes
by registering a com.datastax.oss.driver.api.core.metadata.schema.Schema

ChangeListener with the CqlSession as it is built using the withSchemaChangeLis
tener() operation on the builder, or via the advanced.schema-change-listener
configuration option.

In addition to the schema access you’ve just examined in the Metadata class, the Java
driver also provides a facility for managing schema in the com.data

stax.oss.driver.api.querybuilder package. The SchemaBuilder provides a
fluent-style API for creating Statements representing operations such as CREATE,
ALTER, and DROP on keyspaces, tables, indexes, and user-defined types (UDTs).

For example, you could create the reservations_by_confirmation table using the
createTable() schema builder:

import static com.datastax.oss.driver.api.querybuilder.SchemaBuilder.createTable;
import com.datastax.oss.driver.api.core.type.DataTypes;

cqlSession.execute(createTable("reservation", "reservations_by_confirmation")
 .ifNotExists()
 .withPartitionKey("confirm_number, DataTypes.TEXT)
 .withColumn("hotel_id", DataTypes.TEXT)
 .withColumn("start_date", DataTypes.DATE)
 .withColumn("end_date", DataTypes.DATE)
 .withColumn("room_number", DataTypes.SMALLINT)
 .withColumn("guest_id", DataTypes.UUID)
 .build());

DataStax Java Driver | 179

Managing Case-Sensitive Identifiers with the Java Driver

As you learned in Chapter 4, CQL is case-sensitive by default.
While the practice is generally discouraged, it is possible to create
case-sensitive names for keyspaces, tables, and columns by using
quotes around identifiers in CQL. In order to simplify the handling
of case sensitivity, the Java driver uses the CqlIdentifier class as a
wrapper for all identifiers in its schema API. If you are writing code
that manipulates schema, it’s a good practice to make use of these
identifiers as well. Java Driver APIs that accept identifiers as argu‐
ments support both Java String (as shown previously) and CqlI
dentifier formats (as shown in the Reservation Service
implementation).

Debugging and Monitoring
The Java driver provides features for monitoring and debugging your client’s use of
Cassandra, including facilities for logging and metrics. There are also capabilities for
query tracing and tracking slow queries, which you’ll learn about in Chapter 13.

Driver logging
As you will learn in Chapter 11, Cassandra uses a logging API called Simple Logging
Facade for Java (SLF4J). The Java driver uses the SLF4J API for logging as well. In
order to enable logging on your Java client application, you need to provide a compli‐
ant SLF4J implementation on the classpath, such as Logback (used by the Reservation
Service) or Log4j. The Java driver provides information at multiple levels; the ERROR,
WARN, and INFO levels are the most useful to application developers.

You configure logging by taking advantage of Logback’s configuration mechanism,
which supports separate configuration for test and production environments. Log‐
back inspects the classpath first for the file logback-test.xml representing the test con‐
figuration, and then if no test configuration is found, it searches for the file
logback.xml. Here’s an example extract from a logback.xml configuration file that ena‐
bles the INFO log level for the Java driver:

<configuration>
 <!-- other appenders and loggers -->
 <logger name="com.datastax.oss.driver" level="INFO"/>
</configuration>

For more detail on Logback configuration, including sample configuration files for
test and production environments, see the configuration page or the Reservation Ser‐
vice implementation.

180 | Chapter 8: Application Development with Drivers

https://oreil.ly/vqv9A
https://oreil.ly/1Nr9a
http://logback.qos.ch/
https://oreil.ly/wyKXy

Driver metrics
Sometimes it can be helpful to monitor the behavior of client applications over time
in order to detect abnormal conditions and debug errors. The Java driver collects
metrics on its activities and makes these available using the Dropwizard Metrics
library. The driver reports metrics on connections, task queues, queries, and errors
such as connection errors, read and write timeouts, retries, and speculative execu‐
tions. A full list of metrics is available in the reference configuration.

You can access the Java driver metrics locally via the CqlSession.getMetrics()
operation. The Metrics library can also integrate with the Java Management Exten‐
sions (JMX) to allow remote monitoring of metrics. We’ll discuss the remote moni‐
toring of metrics from Cassandra nodes in Chapter 11, and the same techniques
apply to gathering metrics from client applications. JMX reporting is disabled by
default in the v4 drivers (it was enabled by default in v3), but can be configured.

DataStax Python Driver
The DataStax Python Driver was introduced in 2014, replacing the Pycassa client
built on Cassandra’s legacy Thrift interface as the primary Python driver for Cassan‐
dra. The driver supports Python 2.7 as well as current Python 3 versions back to 3.4.
You can install the driver by running the Python installer pip:

$ pip install cassandra-driver

Installing Python and PIP

To use the example code, you’ll need a compatible version of
Python for your platform (as listed earlier), and pip. You can install
pip by downloading the script and running the command python
get-pip.py. You may need to run this command via sudo on Unix
systems.

Here’s a simple example of connecting to a cluster and inserting a row in the hotels
table:

from cassandra.cluster import Cluster
cluster = Cluster(['127.0.0.1'])
session = cluster.connect('hotel')
session.execute("""
 insert into hotels (id, name, phone)
 values (%s, %s, %s)
 """,
 ('AZ123', 'Super Hotel at WestWorld', '1-888-999-9999')
)

DataStax Python Driver | 181

https://oreil.ly/RL4tQ
https://github.com/dropwizard/metrics
https://github.com/dropwizard/metrics
https://oreil.ly/ktuSE
https://oreil.ly/Fn2_I
https://bootstrap.pypa.io/get-pip.py

The Python driver includes an object mapper called cqlengine and makes use of third-
party libraries for performance, compression, and metrics. The driver source is avail‐
able on GitHub. C extensions using Cython are used to speed up performance. The
driver may also be run on PyPy, an alternative Python runtime that uses a JIT com‐
piler. The reduced CPU consumption leads to improved throughput, up to two times
better than regular Python.

DataStax Node.js Driver
The DataStax Node.js Driver was introduced in October 2014, based on the node-
cassandra-cql project developed by Jorge Bay.

The Node.js driver is installed via the node package manager (NPM):

$ npm install cassandra-driver

Installing the Node.js Runtime and Package Manager

If you don’t have experience using Node, you can get an installation
for your platform at link:https://nodejs.org that includes both
Node.js and NPM. These are typically installed at /usr/local/bin/
node and /usr/local/bin/npm on Unix systems.

The syntax is a bit different, in that you access a Client object instead of a Cluster as
in other language drivers, and the datacenter name is required. The other constructs
are very similar:

const cassandra = require('cassandra-driver');
const client = new cassandra.Client({ contactPoints: ['127.0.0.1'],
 localDataCenter: 'datacenter1',
 keyspace: 'hotel'});

Building and executing a parameterized query looks like this:

const query = 'SELECT * FROM hotels WHERE id=?';
client.execute(query, ['AZ123'], function(err, result) {
 assert.ifError(err);
 console.log('got hotel with name ' + result.rows[0].name);
});

The Node.js driver also contains an object mapper and provides built-in TypeScript
support. It provies both promise and callback-based APIs. As with other DataStax
drivers, the source code is available on GitHub.

182 | Chapter 8: Application Development with Drivers

https://oreil.ly/ujp48
https://docs.datastax.com/en/developer/python-driver/latest/performance/#cython-extensions
https://docs.datastax.com/en/developer/python-driver/latest/performance/#pypy
https://oreil.ly/QFWc7
https://docs.datastax.com/en/developer/nodejs-driver/latest/features/mapper/
https://oreil.ly/0jmld

DataStax C# Driver
First released in July 2013, the DataStax C# Driver provides support for Windows cli‐
ents using the .NET Framework and cross-platform development with .NET Core.
For this reason, it is also frequently referred to as the “.NET Driver.”

The C# Driver is available on NuGet, the package manager for the Microsoft develop‐
ment platform. Within PowerShell, run the following command at the Package Man‐
ager Console:

PM> Install-Package CassandraCSharpDriver

To use the driver, create a new project in Visual Studio and add a using directive that
references the Cassandra namespace. The following example connects to our hotel
keyspace and inserts a new record into the hotels table:

var cluster = Cluster.Builder()
.AddContactPoints("127.0.0.1")
.Build();

var session = cluster.Connect("hotel");
session.Execute(
 "INSERT INTO hotels (id, name, phone) " +
 "VALUES (" +
 "'AZ123'," +
 "'Super Hotel at WestWorld'," +
 "'1-888-999-9999'," +
 ";");

The C# Driver integrates with Language Integrated Query (LINQ), a Microsoft .NET
Framework component that adds query capabilities to .NET languages; there is a sep‐
arate object mapper available as well.

Other Cassandra Drivers
There are several drivers available for other programming languages:

GoCQL Driver
The Go language created at Google has seen a rapid increase in popularity for
server applications since its public introduction in 2009. The language is like C
syntax but contains similar improvements in terms of memory management and
concurrency.

GoCQL is an open source driver for the Go language. It is under active develop‐
ment and provides many of the same features as the DataStax drivers, including
connection management, statement execution, paging, batches, and more.

DataStax C# Driver | 183

https://gocql.github.io/
https://github.com/gocql/gocql

DataStax C/C++ Driver
The DataStax C/C++ Driver was released in February 2014. The C/C++ Driver is
a bit different than the other drivers in that its API focuses on asynchronous
operations to the exclusion of synchronous operations.

The C/C++ driver uses the libuv library for asynchronous I/O operations, and
optionally uses the OpenSSL library if needed for encrypted client-node connec‐
tions. Instructions for compilation and linking vary by platform, so see the driver
documentation for details.

DataStax Ruby and PHP Drivers
DataStax also has drivers available for Ruby and PHP, although these are consid‐
ered to be in maintenance mode and are updated only for critical bug fixes.

JDBC and ODBC Drivers
Open Database Connectivity (ODBC) is a standard developed by Microsoft that
allows applications to access data using SQL. Java Database Connectivity (JDBC)
is a Java API that provides a SQL abstraction—see the java.sql package. JDBC
and ODBC drivers are available from vendors, including Simba and Progress
Software.

Stargate, An Open Source Data Gateway
While the development of CQL-based drivers has been a major boost to application
development with Cassandra, many developers experience a significant learning
curve in getting to know both CQL and the nuances of configuring and tuning per‐
formance with various drivers. Due to the continually evolving landscape of program‐
ming languages, there may not be an actively supported driver available for the
language you are using.

Many organizations have dealt with these issues by building their own API frame‐
works on top of Cassandra, as recounted by Jeff Carpenter in the article “Data Serv‐
ices for the Masses”. These frameworks tend to abstract the details of connecting with
Cassandra clusters and executing queries behind more developer friendly APIs, and
in some cases incorporate additional data stores.

In 2020, after observing many of these frameworks and noting their similar function‐
ality, a team of engineers at DataStax created Stargate, an open source API framework
for data. Stargate launched with CQL and REST APIs, and subsequently added
GraphQL, gRPC, and a document-style REST API.

Stargate can be installed in front of Cassandra 3.11, Cassandra 4.0, and DataStax
Enterprise 6.8 clusters, and Docker images are available. Stargate APIs are also avail‐
able by default on Cassandra clusters in DataStax Astra.

184 | Chapter 8: Application Development with Drivers

https://oreil.ly/08zcO
https://oreil.ly/SL3ds
https://oreil.ly/bI0nK
https://oreil.ly/cgyv0
https://oreil.ly/cgyv0
https://hackernoon.com/data-services-for-the-masses-jc4k35qa
https://hackernoon.com/data-services-for-the-masses-jc4k35qa
https://stargate.io
https://oreil.ly/aiFss
https://oreil.ly/jmcbW
https://oreil.ly/j4ACL
https://oreil.ly/ofAlB

While the REST and gRPC APIs are based on CQL and expose details of the underly‐
ing Cassandra tables, the Document and GraphQL APIs point to a future state in
which Stargate APIs could be implemented by a pluggable selection of data stores.

Summary
You should now understand the various drivers available for Cassandra, the features
they provide, and how to install and use them. We gave particular attention to the
DataStax Java Driver in order to get some hands-on experience, which should serve
you well even if you choose to use one of the other DataStax or community drivers.
You’ll continue to learn other driver features in the coming chapters as we discuss
more details of reading and writing.

Summary | 185

CHAPTER 9

Writing and Reading Data

Now that you understand the data model and how to use a simple client, let’s dig
deeper into the different kinds of queries you can perform in Cassandra to write and
read data. We’ll also take a look behind the scenes to see how Cassandra handles your
queries. Understanding these details will help you design queries that will perform
well and provide the behavior you need.

As with the previous chapter, we’ve included code samples using the DataStax Java
Driver to help illustrate how these concepts work in practice.

Writing
Let’s start by noting some basic properties of writing data to Cassandra. First, writing
data is very fast in Cassandra, because its design does not require performing disk
reads or seeks. The memtables and SSTables save Cassandra from having to perform
these operations on writes, which slows down many databases. All writes to disk in
Cassandra are append only.

Because of the database commit log and hinted handoff design, the database is always
writable, and within a row, writes are always atomic.

Write Consistency Levels
Cassandra’s tuneable consistency levels mean that you can specify in your queries
how much consistency you require on writes. A higher consistency level means that
more replica nodes need to respond, indicating that the write has completed. Higher
consistency levels also come with a reduction in availability, as more nodes must be
operational for the write to succeed. The implications of using the different consis‐
tency levels on writes are shown in Table 9-1.

187

Table 9-1. Write consistency levels

Consistency level Implication

ANY Ensure that the value is written to a minimum of one replica node before returning to the client,
allowing hints to count as a write.

ONE, TWO,
THREE

Ensure that the value is written to the commit log and memtable of at least one, two, or three nodes
before returning to the client.

LOCAL_ONE Similar to ONE, with the additional requirement that the responding node is in the local data center.

QUORUM Ensure that the write was received by at least a majority of replicas ((replication factor / 2) +
1).

LOCAL_QUORUM Similar to QUORUM, where the responding nodes are in the local data center.

EACH_QUORUM Ensure that a QUORUM of nodes respond in each data center.

ALL Ensure that the number of nodes specified by replication factor received the write before
returning to the client. If even one replica is unresponsive to the write operation, fail the operation.

The most notable consistency level for writes is the ANY level. This level means that
the write is guaranteed to reach at least one node, but it allows a hint to count as a
successful write. That is, if you perform a write operation and the node that the opera‐
tion targets for that value is down, the server will make a note to itself, called a hint,
which it will store until that node comes back up, or until the stored hint passes the
expiration window specified by the max_hint_window_in_ms property defined for the
node. Once the node is up, the server will detect this, look to see whether it has any
writes that it saved for later in the form of a hint, and then write the value to the
revived node.

Using the consistency level of ONE on writes means that the write operation will be
written to both the commit log and the memtable. That means that writes at ONE are
durable, so this level is the minimum level to use to achieve fast performance and
durability. If this node goes down immediately after the write operation and before
the memtable has been flushed to disk, the value will have been written to the commit
log, which can be replayed when the server is brought back up to ensure that it still
has the value.

Default Consistency Levels
Cassandra clients typically support setting a default consistency level for all queries,
as well as a specific level for individual queries. For example, in cqlsh you can check
and set the default consistency level using the CONSISTENCY command:

cqlsh> CONSISTENCY;
Current consistency level is ONE.
cqlsh> CONSISTENCY LOCAL_ONE;
Consistency level set to LOCAL_ONE.

188 | Chapter 9: Writing and Reading Data

In the DataStax Java Driver, the default consistency level can be set through the con‐
figuration option:

basic.request.consistency = QUORUM

If you do not configure this, it will be set to LOCAL_ONE. The default consistency level
can be overridden on an individual statement:

Statement statement = ...
statement.setConsistencyLevel(ConsistencyLevel.LOCAL_QUORUM);

The Cassandra Write Path
The write path describes how data modification queries initiated by clients are pro‐
cessed, eventually resulting in the data being stored on disk. We’ll examine the write
path in terms of both interactions between nodes and the internal process of storing
data on an individual node. An overview of the write path interactions between nodes
in a multiple data center cluster is shown in Figure 9-1.

The write path begins when a client initiates a write query to a Cassandra node that
serves as the coordinator for this request. The coordinator node uses the partitioner
to identify which nodes in the cluster are replicas, according to the replication factor
for the keyspace. The coordinator node may itself be a replica, especially if the client
is using a token-aware load balancing policy. If the coordinator knows that there are
not enough replicas up to satisfy the requested consistency level, it returns an error
immediately.

Next, the coordinator node sends simultaneous write requests to all local replicas for
the data being written. If the cluster spans multiple data centers, the local coordinator
node selects a remote coordinator in each of the other data centers to forward the
write to the replicas in that data center. Each of the remote replicas acknowledges the
write directly to the original coordinator node.

This ensures that all nodes will get the write as long as they are up. Nodes that are
down will not have consistent data, but they will be repaired via one of the anti-
entropy mechanisms: hinted handoff, read repair, or anti-entropy repair.

The coordinator waits for the replicas to respond. Once a sufficient number of repli‐
cas have responded to satisfy the consistency level, the coordinator acknowledges the
write to the client. If a replica doesn’t respond within the timeout, it is presumed to be
down, and a hint is stored for the write. A hint does not count as a successful replica
write unless the consistency level ANY is used.

Writing | 189

Figure 9-1. Interactions between nodes on the write path

Figure 9-2 depicts the interactions that take place within each replica node to process
a write request. These steps are common in databases that share the log-structured
merge tree design we explored in Chapter 6.

Figure 9-2. Interactions within a node on the write path

First, the replica node receives the write request and immediately writes the data to
the commit log. Next, the replica node writes the data to a memtable. If row caching
is used and the row is in the cache, the row is invalidated. We’ll discuss caching in
more detail under the read path.

If the write causes either the commit log or memtable to pass its maximum thresh‐
olds, a flush is scheduled to run. We’ll learn how to tune these thresholds in Chap‐
ter 13.

190 | Chapter 9: Writing and Reading Data

At this point, the write is considered to have succeeded and the node can reply to the
coordinator node or client.

After returning, the node executes a flush if one was scheduled. The contents of each
memtable are stored as SSTables on disk, and the commit log is cleared. After the
flush completes, additional tasks are scheduled to check if compaction is needed, and
then a compaction is performed if necessary.

More Detail on the Write Path

Of course, this is a simple overview of the write path that doesn’t
take into account variants such as counter modifications and mate‐
rialized views. For example, writes to tables with materialized views
are more complex because partitions must be locked while consen‐
sus is negotiated between replicas. Cassandra leverages logged
batches internally in order to maintain materialized views.

Writing Files to Disk
Let’s examine a few more details on the files Cassandra writes to disk, including com‐
mit logs and SSTables.

Commit log files
Cassandra writes commit logs to the filesystem as binary files. By default, the commit
log files are found under the $CASSANDRA_HOME/data/commitlog directory.

Commit log files are named according to the pattern CommitLog-<version><time‐
stamp>.log. For example: CommitLog-7-1566780133999.log. The version is an integer
representing the commit log format. For example, the version for the 4.0 release is 7.
You can find the versions in use by release in the org.apache.cassandra.db.commi
tlog.CommitLogDescriptor class.

SSTable files
When SSTables are written to the filesystem during a flush, there are actually several
files that are written per SSTable. Let’s take a look at the default location under the
$CASSANDRA_HOME/data/data directory to see how the files are organized on
disk.

Writing | 191

Forcing SSTables to Disk

If you’re following along with the exercises in this book on a real
Cassandra node, you may want to execute the nodetool flush
command at this point, as you may not have entered enough data
yet for Cassandra to have flushed data to disk automatically. You’ll
learn more about this command in Chapter 12.

Looking in the data directory, you’ll see a directory for each keyspace. These directo‐
ries, in turn, contain a directory for each table, consisting of the table name plus a
UUID. The purpose of the UUID is to distinguish between multiple schema versions.

Each of these directories contains SSTable files that contain the stored data. Here is an
example directory path: hotel/hotels-3677bbb0155811e5899aa9fac1d00bce.

Each SSTable is represented by multiple files that share a common naming scheme.
The files are named according to the pattern <version>-<generation>-
<implementation>-<component>.db. The significance of the pattern is as follows:

version
A two-character sequence representing the major/minor version of the SSTable
format. For example, the version for the 4.0 release is na. You can learn more the
about various versions in the org.apache.cassandra.io.sstable.Descriptor
class

generation
An index number that is incremented every time a new SSTable is created for a
table

implementation
A reference to the implementation of the org.apache.cassan

dra.io.sstable.format.SSTableWriter interface in use. As of the 4.0 release
the value is “big,” which references the “Bigtable format” found in the
org.apache.cassandra.io.sstable.format.big.BigFormat class

Each SSTable is broken up into multiple files or components. These are the compo‐
nents as of the 3.0 release:

Data.db
These are the files that store the actual data and are the only files that are pre‐
served by Cassandra’s backup mechanisms, which you’ll learn about in Chap‐
ter 12.

CompressionInfo.db
Provides metadata about the compression of the Data.db file.

192 | Chapter 9: Writing and Reading Data

Digest.crc32
Contains a CRC32 checksum for the *-Data.db file.

Filter.db
Contains the Bloom filter for this SSTable.

Index.db
Provides row and column offsets within the corresponding *-Data.db file. The
contents of this file are read into memory so that Cassandra knows exactly where
to look when reading datafiles.

Summary.db
A sample of the index for even faster reads.

Statistics.db
Stores statistics about the SSTable that are used by the nodetool tablehisto
grams command.

TOC.txt
Lists the file components for this SSTable.

Older releases support different versions and filenames. Releases prior to 2.2 prepend
the keyspace and table name to each file, while 2.2 and later releases leave these out
because they can be inferred from the directory name.

We’ll investigate some tools for working with SSTable files in Chapter 12.

Lightweight Transactions
As we’ve discussed previously in Chapter 1, Cassandra and many other NoSQL data‐
bases do not support transactions with full ACID semantics supported by relational
databases. However, Cassandra does provide two mechanisms that offer some trans‐
actional behavior: lightweight transactions and batches.

Cassandra’s lightweight transaction (LWT) mechanism uses the Paxos algorithm
described in Chapter 6. LWTs were introduced in the 2.0 release. LWTs support the
following semantics:

• On an INSERT, adding the IF NOT EXISTS clause will ensure that you do not
overwrite an existing row with the same primary key. This is frequently used in
cases where uniqueness is important, such as managing user identity or accounts,
or maintaining unique reservation records, as you’ll later see. Alternatively, the
IF EXISTS clause will only update the row with the provided primary key if it is
already present in the database. This is effectively limiting Cassandra’s upsert
behavior.

Writing | 193

• On an UPDATE, adding an IF <conditions> clause will perform a check of one or
more provided conditions, where multiple conditions are separated by an AND.
Each condition is a check against a column in a WHERE clause using operators,
including equality operators (=, !=), comparison operators (>, >=, <, ⇐), and the
IN operator. This is frequently used to make sure that a row has an expected value
that cannot change before a write occurs. If a transaction fails because the exist‐
ing values did not match the ones you expected, Cassandra will include the cur‐
rent values so you can decide whether to retry or abort without needing to make
an extra request. This form of lightweight transaction is frequently used for man‐
aging inventory counts.

Let’s say you wanted to create a record for a new hotel, using the data model intro‐
duced in Chapter 5. You want to make sure that you’re not overwriting a reservation
with the same confirmation number, so you add the IF NOT EXISTS syntax to your
INSERT command:

cqlsh> INSERT INTO reservation.reservations_by_confirmation (confirm_number,
 hotel_id, start_date, end_date, room_number, guest_id) VALUES (
 'RS2G0Z', 'NY456', '2020-06-08', '2020-06-10', 111,
 1b4d86f4-ccff-4256-a63d-45c905df2677) IF NOT EXISTS;

 [applied]

 True

This command checks to see if there is a record with the partition key, which for this
table consists of the confirm_number. So let’s find out what happens when you exe‐
cute this command a second time:

cqlsh> INSERT INTO reservation.reservations_by_confirmation (confirm_number,
 hotel_id, start_date, end_date, room_number, guest_id)
 VALUES ('RS2G0Z', 'NY456', '2020-06-08', '2020-06-10', 111,
 1b4d86f4-ccff-4256-a63d-45c905df2677) IF NOT EXISTS;

 [applied] | confirm_number | end_date | guest_id | hotel_id | ...
-----------+----------------+------------+-------------+----------+-----
 False | RS2G0Z | 2020-06-10 | 1b4d86f4... | NY456 | ...

In this case, the transaction fails, because there is already a reservation with the num‐
ber “RS2G0Z,” and cqlsh helpfully echoes back a row containing a failure indication
and the original contents of the row.

It works in a similar way for updates. For example, you might use the following state‐
ment to make sure you’re changing the end date for a reservation, but only if the pre‐
vious value is the end date you expect:

cqlsh> UPDATE reservation.reservations_by_confirmation SET end_date='2020-06-12'
 WHERE confirm_number='RS2G0Z' IF end_date='2020-06-10';

194 | Chapter 9: Writing and Reading Data

 [applied]

 True

Similar to what you saw with multiple INSERT statements, entering the same UPDATE
statement again fails because the value has already been set. Because of Cassandra’s
upsert model, the IF NOT EXISTS syntax available on INSERT, and the IF x=y syntax
on UPDATE represent the main semantic difference between these two operations.

Using Lightweight Transactions on Schema Creation

CQL also supports the use of the IF NOT EXISTS option on the cre‐
ation of keyspaces and tables. This is especially useful if you are
scripting multiple schema updates.

Let’s implement the reservation INSERT using the DataStax Java Driver. When execut‐
ing a conditional statement, the ResultSet will contain a single Row with a column
named applied of type boolean. This tells you whether the conditional statement
was successful or not. You can also use the wasApplied() operation on the statement:

cqlsh>SimpleStatement reservationInsert = SimpleStatement.builder(
 "INSERT INTO reservations_by_confirmation (confirm_number,
 hotel_id, start_date, end_date, room_number, guest_id)
 VALUES (?, ?, ?, ?, ?, ?)")
 .addPositionalValue("RS2G0Z")
 .addPositionalValue("NY456")
 .addPositionalValue("2020-06-08")
 .addPositionalValue("2020-06-10")
 .addPositionalValue(111)
 .addPositionalValue("1b4d86f4-ccff-4256-a63d-45c905df2677")
 .ifNotExists()
 .build();

ResultSet reservationInsertResult = session.execute(reservationInsert);

boolean wasApplied = reservationInsertResult.wasApplied();

if (wasApplied) {
 Row row = reservationInsertResult.one();
 row.getBool("applied");
}

This is a simple example using hardcoded values for readability rather than variables.
You can find a working code sample for inserting reservation data using lightweight
transactions on the lightweight-transaction-solution branch of the Reservation
Service repository.

Conditional write statements use a serial consistency level in addition to the regular
consistency level. The serial consistency level determines the number of nodes that

Writing | 195

must reply in the Paxos phase of the write, when the participating nodes are negotiat‐
ing about the proposed write. The two available options are shown in Table 9-2.

Table 9-2. Serial consistency levels

Consistency level Implication

SERIAL This is the default serial consistency level, indicating that a quorum of nodes must respond.

LOCAL_SERIAL Similar to SERIAL, but indicates that the transaction will only involve nodes in the local data center.

The serial consistency level can apply on reads as well. If Cassandra detects that a
query is reading data that is part of an uncommitted transaction, it commits the
transaction as part of the read, according to the specified serial consistency level.

You can set a default serial consistency level for all statements in cqlsh using the
SERIAL CONSISTENCY statement, or in the DataStax Java Driver using the serial-
consistency configuration option. To override the configured level on an individual
statement, use the Statement.setSerialConsistencyLevel() operation.

Batches
While lightweight transactions are limited to a single partition, Cassandra provides a
batch mechanism that allows you to group multiple modifications into a single state‐
ment, whether they address the same partition or different partitions.

The semantics of the batch operation are as follows:

• Only modification statements (INSERT, UPDATE, or DELETE) may be included in a
batch.

• Batches may be logged or unlogged, where logged batches have more safeguards.
We’ll explain this in more detail below.

• Batches are not a transaction mechanism, but you can include lightweight trans‐
action statements in a batch. Multiple lightweight transactions in a batch must
apply to the same partition.

• Counter modifications are only allowed within a special form of batch known as
a counter batch. A counter batch can only contain counter modifications.

Using a batch saves back-and-forth traffic between the client and the coordinator
node, as the client is able to group multiple statements in a single query. However, the
logged batch places additional work on the coordinator to orchestrate the execution
of the various statements.

Cassandra’s batches are a good fit for use cases such as making multiple updates to a
single partition, or keeping multiple tables in sync. A good example is making modi‐
fications to denormalized tables that store the same data for different access patterns.

196 | Chapter 9: Writing and Reading Data

Batches Aren’t for Bulk Loading

First-time users often confuse batches for a way to get faster perfor‐
mance for bulk updates. This is definitely not the case—batches
actually decrease performance and can cause garbage collection
pressure. We’ll look at tools for bulk loading in Chapter 15.

In previous examples, you’ve inserted rows into the reservations_by_confirmation
table, but remember that there is also a denormalized table design for reservations:
reservations_by_hotel_date. Let’s use a batch to group those writes together.

For a logged batch, use the CQL BEGIN BATCH and APPLY BATCH keywords to sur‐
round the statements you wish to include:

cqlsh> BEGIN BATCH
 INSERT INTO reservation.reservations_by_confirmation (confirm_number,
 hotel_id, start_date, end_date, room_number, guest_id)
 VALUES ('RS2G0Z', 'NY456', '2020-06-08', '2020-06-10', 111,
 1b4d86f4-ccff-4256-a63d-45c905df2677);
 INSERT INTO reservation.reservations_by_hotel_date (confirm_number,
 hotel_id, start_date, end_date, room_number, guest_id)
 VALUES ('RS2G0Z', 'NY456', '2020-06-08', '2020-06-10', 111,
 1b4d86f4-ccff-4256-a63d-45c905df2677);
APPLY BATCH;

The DataStax Java Driver supports batches through the com.data

stax.oss.driver.api.core.cql.BatchStatement class. Here’s an example of what
the same batch would look like in a Java client:

SimpleStatement reservationByConfirmationInsert = SimpleStatement.builder(
 "INSERT INTO reservations_by_confirmation (confirm_number, hotel_id,
 start_date, end_date, room_number, guest_id) VALUES (?, ?, ?, ?, ?, ?)")
 .addPositionalValue("RS2G0Z")
 .addPositionalValue("NY456")
 .addPositionalValue("2020-06-08")
 .addPositionalValue("2020-06-10")
 .addPositionalValue(111)
 .addPositionalValue("1b4d86f4-ccff-4256-a63d-45c905df2677")
 .build();

SimpleStatement reservationByHotelDateInsert = SimpleStatement.builder(
 "INSERT INTO reservations_by_hotel_date (confirm_number, hotel_id,
 start_date, end_date, room_number, guest_id) VALUES (?, ?, ?, ?, ?, ?)")
 .addPositionalValue("RS2G0Z")
 .addPositionalValue("NY456")
 .addPositionalValue("2020-06-08")
 .addPositionalValue("2020-06-10")
 .addPositionalValue(111)
 .addPositionalValue("1b4d86f4-ccff-4256-a63d-45c905df2677")
 .build();

Writing | 197

https://oreil.ly/UkFVT

BatchStatement reservationBatch = new BatchStatement();
reservationBatch.add(reservationByConfirmationInsert);
reservationBatch.add(reservationByHotelDateInsert);

cqlSession.execute(reservationBatch);

You can also create batches using a BatchStatementBuilder. You can find an exam‐
ple of working with BatchStatement on the batch-statement-solution branch of
the Reservation Service repository.

Creating Counter Batches in DataStax Drivers

The DataStax drivers do not provide separate mechanisms for
counter batches. Instead, you must simply remember to create
batches that include only counter modifications or only non-
counter modifications.

Logged batches are atomic—that is, if the batch is accepted, all of the statements in a
batch will succeed eventually. This is why logged batches are sometimes referred to as
atomic batches. Note that this is not the same definition of atomicity you might be
used to if you have a relational database background. While all updates in a batch
belonging to a given partition key are performed atomically, there is no guarantee
across partitions. This means that modifications to different partitions may be read
before the batch completes.

Here’s how a logged batch works under the covers: the coordinator sends a copy of
the batch called a batchlog to two other nodes, where it is stored in the system.bat
chlog table. The coordinator then executes all of the statements in the batch, and
deletes the batchlog from the other nodes after the statements are completed.

If the coordinator should fail to complete the batch, the other nodes have a copy in
their batchlog and are therefore able to replay the batch. Each node checks its bat‐
chlog once a minute to see if there are any batches that should have completed. To
give ample time for the coordinator to complete any in-progress batches, Cassandra
uses a grace period from the timestamp on the batch statement equal to twice the
value of the write_request_timeout_in_ms property. Any batches that are older
than this grace period will be replayed and then deleted from the remaining node.
The second batchlog node provides an additional layer of redundancy, ensuring high
reliability of the batch mechanism.

In an unlogged batch, the steps involving the batchlog are skipped, allowing the write
to complete more quickly. Users who are trying to rapidly insert a lot of data are often
tempted to use unlogged batches. The trade-off you’ll want to consider is that there is
no guarantee that all of the writes to different partitions will complete successfully,
which could leave the database in an inconsistent state. This risk does not exist when
a batch contains mutations to a single partition. For this reason, if you request a

198 | Chapter 9: Writing and Reading Data

logged batch with mutations to a single partition, Cassandra actually executes it as an
unlogged batch to give you an extra boost of speed.

Another factor you should consider is the size of batches, measured in terms of the
total data size, in bytes, rather than a specific number of statements. Cassandra enfor‐
ces limits on the data size of batch statements to prevent them from becoming arbi‐
trarily large and impacting the performance and stability of the cluster. The
cassandra.yaml file contains two properties that control how this works: the
batch_size_warn_threshold_in_kb property defines the level at which a node will
log at the WARN log level that it has received a large batch, while any batch exceeding
the value set batch_size_fail_threshold_in_kb will be rejected and result in error
notification to the client. The batch size is measured in terms of the total amount of
bytes to be sent. For simple statements, the size is the length of each CQL query, but
the size will be lower for prepared statements since only the statement ID and param‐
eter values are sent. The warning threshold defaults to 5 KB, while the fail threshold
defaults to 50 KB.

Reading
There are a few basic properties of Cassandra’s read capability that are worth noting.
First, it’s easy to read data because clients can connect to any node in the cluster to
perform reads, without having to know whether a particular node acts as a replica for
that data. If a client connects to a node that doesn’t have the data it’s trying to read,
the node it’s connected to will act as a coordinator node to read the data from a node
that does have it, identified by token ranges.

In Cassandra, reads are generally slower than writes due to file I/O from reading
SSTables. To fulfill read operations, Cassandra typically has to perform seeks, but you
may be able to keep more data in memory by adding nodes, using compute instances
with more memory, and using Cassandra’s caches. Cassandra also has to wait for
responses synchronously on reads (based on consistency level and replication factor),
and then perform read repairs as necessary.

Read Consistency Levels
The consistency levels for read operations are similar to the write consistency levels,
but the way they are handled behind the scenes is slightly different. A higher consis‐
tency level means that more nodes need to respond to the query, giving you more
assurance that the values present on each replica are the same. If two nodes respond
with different timestamps, the newest value wins, and that’s what will be returned to
the client. Cassandra will then perform what’s called a read repair: it takes notice of
the fact that one or more replicas responded to a query with an outdated value, and
updates those replicas with the most current value so that they are all consistent.

Reading | 199

The possible consistency levels, and the implications of specifying each one for read
queries, are shown in Table 9-3.

Table 9-3. Read consistency levels

Consistency level Implication

ONE, TWO,
THREE

Immediately return the record held by the first node(s) that respond to the query. The record is checked
against the same record on other replicas. If any are out of date, a read repair is then performed to sync
them all to the most recent value.

LOCAL_ONE Similar to ONE, with the additional requirement that the responding node is in the local data center.

QUORUM Query all nodes. Once a majority of replicas ((replication factor / 2) + 1) respond, return to the
client the value with the most recent timestamp. Then, if necessary, perform a read repair on all
remaining replicas.

LOCAL_QUORUM Similar to QUORUM, where the responding nodes are in the local data center.

EACH_QUORUM Ensure that a QUORUM of nodes respond in each data center.

ALL Query all nodes. Wait for all nodes to respond, and return to the client the record with the most recent
timestamp. Then, if necessary, perform a read repair. If any nodes fail to respond, fail the read operation.

As you can see from the table, the ANY consistency level is not supported for read
operations. Notice that the implication of consistency level ONE is that the first node
to respond to the read operation is the value that the client will get—even if it is out
of date. The read repair operation is performed after the record is returned, so any
subsequent reads will all have a consistent value, regardless of the responding node.

Another item worth noting is in the case of consistency level ALL. If you specify ALL,
then you’re saying that you require all replicas to respond, so if any node with that
record is down or otherwise fails to respond before the timeout, the read operation
fails. A node is considered unresponsive if it does not respond to a query before the
value specified by read_request_timeout_in_ms in the configuration file. The
default is 5 seconds.

Aligning Read and Write Consistency Levels
The read and write consistency levels you choose to use in your applications are an
example of the flexibility Cassandra provides us to make trade-offs among consis‐
tency, availability, and performance.

As you learned in Chapter 6, Cassandra can guarantee strong consistency on reads by
using read and write consistency levels whose sum exceeds the replication factor. One
simple way to achieve this is to require QUORUM for reads and writes. For example, on a
keyspace with a replication factor of 3, QUORUM represents a response from two out of
three nodes. Because 2 + 2 is greater than 3, strong consistency is guaranteed.

If you are willing to sacrifice strong consistency in order to support increased
throughput and more tolerance for downed nodes, you can use lesser consistency

200 | Chapter 9: Writing and Reading Data

levels. For example, using QUORUM for writes and ONE for reads doesn’t guarantee
strong consistency, as 2 + 1 is merely equal to 3.

Thinking this through practically, if you are only guaranteed writes to two out of
three replicas, there is certainly a chance that one of the replicas did not receive the
write and has not yet been repaired, and a read at consistency level ONE could go to
that very node.

The Cassandra Read Path
Now let’s take a look at what happens when a client requests data. This is known as
the read path. We’ll describe the read path from the perspective of a query for a single
partition key, starting with the interactions between nodes shown in Figure 9-3.

Figure 9-3. Interactions between nodes on the read path

The read path begins when a client initiates a read query to the coordinator node. As
on the write path, the coordinator uses the partitioner to determine the replicas, and
checks that there are enough replicas up to satisfy the requested consistency level.
Another similarity to the write path is that a remote coordinator is selected per data
center for any read queries that involve multiple data centers.

If the coordinator is not itself a replica, the coordinator then sends a read request to
the fastest replica, as determined by the dynamic snitch. The coordinator node also
sends a digest request to the other replicas. A digest request is similar to a standard
read request, except the replicas return a digest, or hash, of the requested data.

The coordinator calculates the digest hash for data returned from the fastest replica
and compares it to the digests returned from the other replicas. If the digests are con‐
sistent, and the desired consistency level has been met, then the data from the fastest

Reading | 201

replica can be returned. If the digests are not consistent, then the coordinator must
perform a read repair, as discussed in the following section.

Figure 9-4 shows the interactions that take place within each replica node to process
read requests.

Figure 9-4. Interactions within a node on the read path

When the replica node receives the read request, it first checks the row cache. If the
row cache contains the data, it can be returned immediately. The row cache helps
speed read performance for rows that are accessed frequently. We’ll discuss the pros
and cons of row caching in Chapter 13.

If the data is not in the row cache, the replica node searches for the data in memtables
and SSTables. There is only a single memtable for a given table, so that part of the
search is straightforward. However, there are potentially many physical SSTables for a
single Cassandra table, each of which may contain a portion of the requested data.

Cassandra implements several features to optimize the SSTable search: key caching,
Bloom filters, SSTable indexes, and summary indexes.

The first step in searching SSTables on disk is to use a Bloom filter to determine
whether the requested partition does not exist in a given SSTable, which would make
it unnecessary to search that SSTable.

If the SSTable passes the Bloom filter, Cassandra checks the key cache to see if it con‐
tains the offset of the partition key in the SSTable. The key cache is implemented as a
map structure in which the keys are a combination of the SSTable file descriptor and
partition key, and the values are offset locations into SSTable files. The key cache
helps to eliminate seeks within SSTable files for frequently accessed data, because the
data can be read directly.

202 | Chapter 9: Writing and Reading Data

If the offset is not obtained from the key cache, Cassandra uses a two-level index
stored on disk in order to locate the offset. The first-level index is the partition sum‐
mary, which is used to obtain an offset for searching for the partition key within the
second-level index, the partition index. The partition index is where the offset into the
SSTable for the partition key is stored.

If the offset for the partition key is found, Cassandra accesses the SSTable at the speci‐
fied offset and starts reading data. In the 3.6 release, a chunk cache was added to store
chunks of data from SSTables that are accessed frequently; you’ll learn more about
this in Chapter 13.

Once data has been obtained from all of the SSTables, Cassandra merges the SSTable
data and memtable data by selecting the value with the latest timestamp for each
requested column.

Finally, the merged data can be added to the row cache (if enabled) and returned to
the client or coordinator node. A digest request is handled in much the same way as a
regular read request, with the additional step that a digest is calculated on the result
data and returned instead of the data itself.

Read Repair
Here’s how read repair works: the coordinator makes a full read request from all of
the replica nodes. The coordinator node merges the data by selecting a value for each
requested column. It compares the values returned from the replicas and returns the
value that has the latest timestamp. If Cassandra finds different values stored with the
same timestamp, it will compare the values lexicographically and choose the one that
has the greater value. This case should be exceedingly rare. The merged data is the
value that is returned to the client.

Asynchronously, the coordinator identifies any replicas that return obsolete data and
issues a read-repair request to each of these replicas to update their data based on the
merged data.

The read repair may be performed either before or after the return to the client. If
you are using one of the two stronger consistency levels (QUORUM or ALL), then the
read repair happens before data is returned to the client. If the client specifies a weak
consistency level (such as ONE), then the read repair is optionally performed in the
background after returning to the client. The percentage of reads that result in back‐
ground repairs for a given table is determined by the read_repair_chance and
dc_local_read_repair_chance options for the table.

Reading | 203

Transient Replication
Companies with large Cassandra deployments have developed a technique called
transient replication to help manage infrastructure costs for very large clusters. The
feature works by adding a new type of replica known as a transient replica that only
stores data when regular or full replicas are unavailable. When the full replicas are
available, the data is moved to them through incremental repair, whereupon it can be
deleted from transient replicas. This results in less disk storage to achieve the same
availability and consistency and also reduces CPU and I/O load on nodes in the clus‐
ter. From a client perspective, the fact that you have enabled transient replication
should be transparent.

Transient replication is an experimental feature in the 4.0 release and is disabled by
default. You enable it by setting the enable_transient_replication property in the
cassandra.yaml file. Doing this enables you to configure the replication strategy for
each keyspace to specify how many of the total number of replicas will be designated
as transient replicas; for example:

CREATE KEYSPACE reservation WITH REPLICATION =
 {'class': 'SimpleStrategy', 'replication_factor' : '5/2'};

The 5/2 denotes the request for five total replicas, with three full replicas and two
transient replicas. This is a common usage for a single data center using RF=3; chang‐
ing the strategy to 5/2, that is, three full and two transient replicas, results in the abil‐
ity to have two additional replicas without increasing the number of nodes.

You can configure transient replicas on the NetworkTopologyStrategy as well:

CREATE KEYSPACE reservation WITH REPLICATION =
 {'class' : 'NetworkTopologyStrategy', 'DC1' : '3/1', 'DC2' : '3/1'};

For a two data center configuration with RF=3 per data center, changing the strategy
to 3/1 per data center means there will be a total of four full replicas, which is suffi‐
cient to achieve QUORUM consistency.

Because transient replication is configured by keyspace, you can have keyspaces using
transient replication and keyspaces that do not use it in the same cluster.

To understand how Cassandra designates which replicas are full versus transient,
you’ll need to recall what you learned about Cassandra’s ring topology in Chapter 6.
Each node in the cluster is assigned a token, which represents a range of hashed parti‐
tion key values that designate what partitions will be stored on that replica. Remem‐
ber that as you increase the replication factor, the nodes that have the next higher
tokens (clockwise around the ring) will become replicas for a given partition as well.
When you enable transient replication, the nodes with the tokens farthest from the
original token will be the transient replica, as shown in Figure 9-5. In this way, each
node will be a full replica for some tokens and a transient replica for others.

204 | Chapter 9: Writing and Reading Data

https://oreil.ly/9r-61

Figure 9-5. Transient replication and the ring

Let’s see how this works on reads and writes. First, on a write, Cassandra attempts to
write the data to each full replica. When full replicas are down, transient replicas will
receive writes in order to achieve the requested consistency level. Transient replicas
are just as eligible to count toward your desired consistency level as any other node;
this is known as a cheap quorum. Later, when incremental repairs are run, full replicas
that are back online will receive the data, and the transient replicas can discard their
copies.

On reads, at least one full replica is required, but beyond that, any replicas, including
full or transient, may be used to achieve the requested consistency level.

Because transient replication changes the nature of how Cassandra nodes interact,
there are some challenges in reconciling its behavior with other features. For the 4.0
release, features including read repair, batches, lightweight transactions, and counters
cannot be used within keyspaces that have transient replication set. Secondary
indexes and materialized views are unlikely to ever be supported. Finally, remember
that since transient replication is an experimental feature, it is not yet recommended
for production use.

Range Queries, Ordering and Filtering
So far your read queries have been confined to very simple examples. Let’s take a look
at more of the options that Cassandra provides on the SELECT command, such as the
WHERE and ORDER BY clauses.

Reading | 205

First, let’s examine how to use the WHERE clause that Cassandra provides for reading
ranges of data within a partition, sometimes called slices.

In order to do a range query, however, it will help to have some data to work with.
Although you don’t have a lot of data yet, you can quickly get some by using cqlsh to
load some sample reservation data into your cluster. We’ll look at more advanced
bulk loading options in Chapter 15.

You can access a simple .csv file in the GitHub repository for this book. The reserva‐
tions.csv file contains a month’s worth of inventory for two small hotels with five
rooms each. Let’s load the data into the cluster:

cqlsh:hotel> COPY available_rooms_by_hotel_date FROM
 'available_rooms.csv' WITH HEADER=true;

310 rows imported in 0.789 seconds.

If you do a quick query to read some of this data, you’ll find that you have data for
two hotels: “AZ123” and “NY229.”

Now let’s consider how to support the query labeled “Q4. Find an available room in a
given date range” in Chapter 5. Remember that the available_rooms_by_hotel_date
table was designed to support this query, with the primary key:

PRIMARY KEY (hotel_id, date, room_number)

This means that the hotel_id is the partition key, while date and room_number are
clustering columns.

Here’s a CQL statement that allows you to search for hotel rooms for a specific hotel
and date range:

cqlsh:hotel> SELECT * FROM available_rooms_by_hotel_date
 WHERE hotel_id='AZ123' and date>'2016-01-05' and date<'2016-01-12';

 hotel_id | date | room_number | is_available
----------+------------+-------------+--------------
 AZ123 | 2016-01-06 | 101 | True
 AZ123 | 2016-01-06 | 102 | True
 AZ123 | 2016-01-06 | 103 | True
 AZ123 | 2016-01-06 | 104 | True
 AZ123 | 2016-01-06 | 105 | True
...
(30 rows)

Note that this query involves the partition key hotel_id and a range of values repre‐
senting the start and end of your search over the clustering key date.

If you wanted to try to find the records for room number 101 at hotel AZ123, you
might attempt a query like the following:

206 | Chapter 9: Writing and Reading Data

https://github.com/jeffreyscarpenter/cassandra-guide

cqlsh:hotel> SELECT * FROM available_rooms_by_hotel_date
 WHERE hotel_id='AZ123' and room_number=101;
InvalidRequest: code=2200 [Invalid query] message="PRIMARY KEY column
 "room_number" cannot be restricted as preceding column "date" is not
 restricted"

As you can see, this query results in an error, because you have attempted to restrict
the value of the second clustering key while not limiting the value of the first cluster‐
ing key.

The syntax of the WHERE clause involves two rules. First, all elements of the partition
key must be identified. Second, a given clustering key may only be restricted if all pre‐
vious clustering keys are restricted by equality.

These restrictions are based on how Cassandra stores data on disk, which is based on
the clustering columns and sort order specified on the CREATE TABLE command. The
conditions on the clustering column are restricted to those that allow Cassandra to
select a contiguous ordering of rows.

The exception to this rule is the ALLOW FILTERING keyword, which allows you to omit
a partition key element. For example, you can search the room status across multiple
hotels for rooms on a specific date with this query:

cqlsh:hotel> SELECT * FROM available_rooms_by_hotel_date
 WHERE date='2016-01-25' ALLOW FILTERING;

 hotel_id | date | room_number | is_available
----------+------------+-------------+--------------
 AZ123 | 2016-01-25 | 101 | True
 AZ123 | 2016-01-25 | 102 | True
 AZ123 | 2016-01-25 | 103 | True
 AZ123 | 2016-01-25 | 104 | True
 AZ123 | 2016-01-25 | 105 | True
 NY229 | 2016-01-25 | 101 | True
 NY229 | 2016-01-25 | 102 | True
 NY229 | 2016-01-25 | 103 | True
 NY229 | 2016-01-25 | 104 | True
 NY229 | 2016-01-25 | 105 | True

(10 rows)

Usage of ALLOW FILTERING is not recommended, however, as it has the potential to
result in very expensive queries. If you find yourself needing such a query, you will
want to revisit your data model to make sure you have designed tables that support
your queries.

The IN clause can be used to test equality with multiple possible values for a column.
For example, you could use the following to find inventory on two dates a week apart
with the command:

Reading | 207

cqlsh:hotel> SELECT * FROM available_rooms_by_hotel_date
 WHERE hotel_id='AZ123' AND date IN ('2016-01-05', '2016-01-12');

Note that using the IN clause to specify multiple clustering column values can result
in slower performance on queries, as the specified column values may correspond to
noncontiguous areas within the row.

Similarly, if you use the IN clause to specify multiple partitions, that would cause the
coordinator node to have to talk to a greater number of nodes to support your query.
In such a case, you might consider kicking off separate requests for the different par‐
titions in parallel threads in your application so that the driver can directly contact a
replica as the coordinator for each query.

Finally, the SELECT command allows you to override the sort order that has been
specified on the columns when you created the table. For example, you could obtain
the rooms in descending order by date for any of your previous queries using the
ORDER BY syntax:

cqlsh:hotel> SELECT * FROM available_rooms_by_hotel_date
 WHERE hotel_id='AZ123' and date>'2016-01-05' and date<'2016-01-12'
 ORDER BY date DESC;

More on the WHERE Clause

The DataStax blog post “A deep look at the CQL WHERE clause”
provides additional advice and examples on how to use the various
options available on the WHERE clause.

Paging
In early releases of Cassandra, clients had to make sure to carefully limit the amount
of data requested at a time. For a large result set, it is possible to overwhelm both
nodes and clients even to the point of running out of memory.

Thankfully, Cassandra provides a paging mechanism that allows retrieval of result
sets incrementally. A simple example of this is shown with the CQL keyword LIMIT.
For example, the following command will return no more than 10 hotels:

cqlsh> SELECT * FROM reservation.reservations_by_hotel_date LIMIT 10;

Of course, the limitation of the LIMIT keyword (pun intended) is that there’s no way
to obtain additional pages containing the additional rows beyond the requested
quantity.

The 2.0 release of Cassandra introduced a feature known as automatic paging. Auto‐
matic paging allows clients to request a subset of the data that would be returned by a
query. The server breaks the result into pages that are returned as the client requests
them.

208 | Chapter 9: Writing and Reading Data

https://oreil.ly/Y622e

You can view paging status in cqlsh via the PAGING command. The following output
shows a sequence of checking paging status, changing the fetch size (page size), and
disabling paging:

cqlsh> PAGING;
Query paging is currently enabled. Use PAGING OFF to disable
Page size: 100
cqlsh> PAGING 1000;
Page size: 1000
cqlsh> PAGING OFF;
Disabled Query paging.
cqlsh> PAGING ON;
Now Query paging is enabled

Now let’s see how paging works in the DataStax Java Driver. You can set a default
fetch size globally for a CqlSession instance using the basic.request.page-size
parameter, which defaults to 5000. The page size can also be set on an individual
statement, overriding the default value:

Statement statement = SimpleStatement.builder("...").build();
statement.setPageSize(2000);

The page size is not necessarily exact; the driver might return slightly more or slightly
fewer rows than requested. The driver handles automatic paging on your behalf,
allowing you to iterate over a ResultSet without requiring knowledge of the paging
mechanism. For example, consider the following code sample for iterating over a
query for hotels:

SimpleStatement reservationsByHotelDateSelect = SimpleStatement.builder(
 "SELECT * FROM reservations_by_hotel_date").build();
ResultSet resultSet = cqlSession.execute(reservationsByHotelDateSelect);

for (Row row : resultSet) {
 // process the row
}

What happens behind the scenes is as follows: when your application invokes the
cqlSession.execute() operation, the driver performs your query to Cassandra,
requesting the first page of results. Your application iterates over the results, as shown
in the for loop, and when the driver detects that there are no more items remaining
on the current page, it requests the next page.

It is possible that the small pause of requesting the next page would affect the perfor‐
mance and user experience of your application, so the ResultSet provides additional
operations that allow more fine-grained control over paging. Here’s an example of
how you could extend your application to do some pre-fetching of rows:

for (Row row : resultSet) {
 if (resultSet.getAvailableWithoutFetching() < 100 &&
 !resultSet.isFullyFetched())

Reading | 209

https://oreil.ly/zZ5NO

 resultSet.fetchMoreResults();
 // process the row
}

This additional statement checks to see if there are less than 100 rows remaining on
the current page using getAvailableWithoutFetching(). If there is another page to
be retrieved, which you determine by checking isFullyFetched(), you initiate an
asynchronous call to obtain the extra rows via fetchMoreResults().

The driver also exposes the ability to access the paging state more directly so it can be
saved and reused later. This could be useful if your application is a stateless web ser‐
vice that doesn’t sustain a session across multiple invocations.

You can access the paging state through the ExecutionInfo of the ResultSet, which
provides the state as an opaque array of bytes contained in a java.nio.ByteBuffer:

ByteBuffer nextPage = resultSet.getExecutionInfo().getPagingState();

You can then save this state within your application, or return it to clients. The paging
state can be converted to a string using toString(), or a byte array using array().

Note that in either string or byte array form, the state is not something you should try
to manipulate or reuse with a different statement since it is not guaranteed to have
the same format between different Cassandra versions. Doing so could result in an
exception.

To resume a query from a given paging state, you set it on the Statement:

SimpleStatement reservationsByHotelDateSelect = SimpleStatement.builder(
 "SELECT * FROM reservation.reservations_by_hotel_date").build();
reservationsByHotelDateSelect.setPagingState(pagingState);

Deleting
Deleting data is not the same in Cassandra as it is in a relational database. In an
RDBMS, you simply issue a delete statement that identifies the row or rows you want
to delete. In Cassandra, a delete does not actually remove the data immediately.
There’s a simple reason for this: Cassandra’s durable, eventually consistent, dis‐
tributed design. If Cassandra had a traditional design for deletes, any nodes that were
down at the time of a delete would not receive the delete. Once one of these nodes
came back online, it would mistakenly think that all of the nodes that had received
the delete had actually missed a write (the data that it still has because it missed the
delete), and it would start repairing all of the other nodes. So Cassandra needs a more
sophisticated mechanism to support deletes. That mechanism is called a tombstone.

A tombstone is a special marker issued in a delete, acting as a placeholder. If any rep‐
lica did not receive the delete operation, the tombstone can later be propagated to
those replicas when they are available again. The net effect of this design is that your

210 | Chapter 9: Writing and Reading Data

data store will not immediately shrink in size following a delete. Each node keeps
track of the age of all its tombstones. Once they reach the age configured in
gc_grace_seconds (which is 10 days by default), then a compaction is run, the tomb‐
stones are garbage collected, and the corresponding disk space is recovered.

Because SSTables are immutable, the data is not deleted from the SSTable. On com‐
paction, tombstones are accounted for, merged data is sorted, a new index is created
over the sorted data, and the freshly merged, sorted, and indexed data is written to a
single new file. The assumption is that 10 days is plenty of time for you to bring a
failed node back online before compaction runs. If you feel comfortable doing so, you
can reduce that grace period to reclaim disk space more quickly.

You’ve previously used the CQL DELETE command in Chapter 4. Here’s what a simple
delete of an entire row looks like using the DataStax Java Driver:

SimpleStatement reservationByConfirmationDelete = SimpleStatement.builder(
 "DELETE * FROM reservation.reservations_by_confirm
 WHERE confirm_number=?")
 .addPositionalValue("RS2G0Z")
 .build();

cqlSession.execute(reservationByConfirmationDelete);

You can also delete data using PreparedStatements, the QueryBuilder, and the Map‐
per. Here is an example of deleting an entire row using the QueryBuilder:

import static com.datastax.oss.driver.api.querybuilder.QueryBuilder.*;

SimpleStatement reservationByConfirmationDelete = deleteFrom("reservations",
 "reservations_by_confirmation")
 .whereColumn("confirm_number").isEqualTo("RS2G0Z")
 .build();

cqlSession.execute(reservationByConfirmationDelete);

Because a delete is a form of write, the consistency levels available for deletes are the
same as those listed for writes.

Cassandra allows you to delete data at multiple levels of granularity. You can:

• Delete items from a collection (set, list, or map), as you learned in Chapter 4
• Delete nonprimary key columns by identifying them by name in your DELETE

query
• Delete entire rows as shown earlier
• Delete ranges of rows using the same WHERE clauses as with the SELECT command
• Delete an entire partition

Deleting | 211

Because of how Cassandra tracks deletions, each of these operations will result in a
single tombstone. The more data you are able to delete in a single command, the
fewer tombstones you will have. If your application generates a large number of
tombstones, Cassandra’s read performance can begin to be impacted by having to tra‐
verse over these tombstones as it reads SSTable files. You’ll learn in Chapter 11 how to
detect this issue, but it’s also wise to try to avoid it to begin with.

Here are a few techniques to help minimize the impact of tombstones on your
cluster:

• Avoid writing NULL values into your tables, as these are interpreted as deletes.
This can happen in cases where an unset attribute on a user interface or API is
interpreted as a NULL value as it moves down through your application stack.
While this is relatively simple to police in your own application code, mapping
frameworks such as Spring Data Cassandra or the DataStax Java Driver’s Mapper
can tend to abstract this behavior, which can lead to the generation of many
tombstones without your knowledge. Make sure you investigate and properly
configure the null-handling behavior you expect when using frameworks that
abstract CQL queries.

• Delete data at the largest granularity you can, ideally entire partitions at once.
This will minimize the number of tombstones you create. Alain Rodriguez’s blog
post “About Tombstones and Deletes in Cassandra” explains this strategy in more
depth.

• Exercise care when updating collections. If possible, avoid replacing the entire
contents of a list, set, or map, as this will generate tombstones for all of the previ‐
ous content. Instead, update only the elements you need to modify.

• Use Cassandra’s time-to-live (TTL) feature when inserting data, which allows
Cassandra to expire data automatically on your behalf.

• For tables that implement a time-series pattern, consider using the TimeWindow
CompactionStrategy, which allows Cassandra to drop entire SSTable files at
once. We’ll discuss this strategy further in Chapter 13.

Summary
In this chapter, you saw how to read, write, and delete data using both cqlsh and cli‐
ent drivers. You also took a peek behind the scenes to learn how Cassandra imple‐
ments these operations, which should help you to make more informed decisions as
you design, implement, deploy, and maintain applications using Cassandra.

212 | Chapter 9: Writing and Reading Data

https://oreil.ly/TCLFM

CHAPTER 10

Configuring and Deploying Cassandra

In this chapter, you’ll build your first cluster and look at the available options for con‐
figuring Cassandra nodes, including aspects of Cassandra that affect node behavior in
a cluster, such as partitioning, snitches, and replication. We will also share a few
pieces of advice as you work toward deploying Cassandra in production. We’ll discuss
options to consider in planning deployments and deploying Cassandra in various
cloud environments.

Cassandra Cluster Manager
Out of the box, Cassandra works with no configuration at all; you can simply down‐
load, decompress, and execute the program to start the server with its default config‐
uration. However, one of the things that makes Cassandra such a powerful
technology is its emphasis on configurability and customization. At the same time,
the number of options may seem confusing at first.

In order to get practice in building and configuring a cluster, let’s take advantage of a
tool called the Cassandra Cluster Manager or ccm. Built by Sylvain Lebresne and sev‐
eral other contributors, this tool is a set of Python scripts that allow you to run a mul‐
tinode cluster on a single machine. This allows you to quickly configure a cluster
without having to provision additional hardware. It’s also a great way to introduce
some of the most commonly configured options, as discussed in the Cassandra docu‐
mentation.

Creating Cassandra Clusters for Testing

It’s often convenient when developing applications with Cassandra
to use real clusters for unit and integration testing. Docker and ccm
are both great options for creating small test clusters that you can
quickly build and tear down for use in your tests.

213

https://oreil.ly/KOLvb
https://oreil.ly/KOLvb

A quick way to get started with ccm is to use the Python installer pip in a terminal
window:

$ pip install ccm

Alternatively, a Homebrew package is available for macOS users: brew install ccm.

Once you’ve installed ccm, it should be on the system path. To get a list of supported
commands, you can type ccm or ccm –help. If you need more information on the
options for a specific cluster command, type ccm <command> -h. You’ll use several of
these commands in the following sections as you create and configure a cluster. You
can also invoke the scripts directly from automated test suites.

The source is available in this GitHub repository. You can dig into the Python script
files to learn more about what ccm is doing.

Creating a Cluster
The cassandra.yaml file is the primary configuration file for a Cassandra node, and
where you specify the configuration values that define a cluster. You can find this file
in the conf directory under your Cassandra installation.

The key values in configuring a cluster are the cluster name, the partitioner, the
snitch, and the seed nodes. The cluster name, partitioner, and snitch must be the
same in all of the nodes participating in the cluster. The seed nodes are not strictly
required to be exactly the same for every node across the cluster, but it is a good idea
to have a common set of seeds per data center; we’ll discuss configuration best practi‐
ces momentarily.

Cassandra clusters are given names to prevent machines in one cluster from joining
another cluster that you don’t want them to be a part of. The name of the default clus‐
ter in the cassandra.yaml file is Test Cluster. You can change the name of the cluster
by updating the cluster_name property—just make sure that you have done this on
all nodes that you want to participate in this cluster.

Changing the Cluster Name

If you have written data to an existing Cassandra cluster and then
change the cluster name, Cassandra will warn you with a cluster
name mismatch error as it tries to read the datafiles on startup, and
then it will shut down.

Let’s try creating a cluster using ccm for use with the Reservation Service we’ve dis‐
cussed in previous chapters (some of the output has been reduced for brevity):

214 | Chapter 10: Configuring and Deploying Cassandra

https://github.com/riptano/ccm

$ ccm create -v 4.0.0 -n 3 reservation_cluster --vnodes
 ...
Current cluster is now: reservation_cluster

This command creates a cluster based on the version of Cassandra you select—in this
case, 4.0.0. The cluster is named my_cluster and has three nodes. You must specify
explicitly when you want to use virtual nodes, because ccm defaults to creating single-
token nodes. ccm designates your cluster as the current cluster that will be used for
subsequent commands. You’ll notice that it downloads the source for the version
requested to run and compiles it. This is because it needs to make minor modifica‐
tions to the Cassandra source in order to support running multiple nodes on a single
machine. You could also have used the copy of the source downloaded in Chapter 3.
If you’d like to investigate additional options for creating a cluster, run the command
ccm create -h.

Running ccm on macOS

ccm uses loopback addresses for each node in a cluster according to
the pattern 127.0.0.1, 127.0.0.2, and so on. If you’re using ccm to
create clusters on macOS, you’ll need to manually create loopback
addresses 127.0.0.2 and greater. See the ccm README if you need
instructions for creating these addresses.

Once you’ve created the cluster, you’ll see it is the only cluster in your list of clusters
(and marked as the currently selected cluster with an asterisk), and you can learn
about its status:

$ ccm list
 *reservation_cluster

$ ccm status
Cluster: 'reservation_cluster'

node1: DOWN (Not initialized)
node3: DOWN (Not initialized)
node2: DOWN (Not initialized)

At this point, none of the nodes have been initialized. Start your cluster and then
check the status again:

$ ccm start

$ ccm status
Cluster: 'reservation_cluster'

node1: UP
node3: UP
node2: UP

Cassandra Cluster Manager | 215

https://github.com/riptano/ccm

This is the equivalent of starting each individual node using the bin/cassandra script.
To dig deeper on the status of an individual node, enter the following command:

$ ccm node1 status

Datacenter: datacenter1
=======================
Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
-- Address Load Tokens Owns (effective) Host ID Rack
UN 127.0.0.1 115.13 KiB 256 67.5% 9019859a-... rack1
UN 127.0.0.2 115.14 KiB 256 63.3% 5650bfa0-... rack1
UN 127.0.0.3 115.13 KiB 256 69.2% 158a78c2-... rack1

This is equivalent to running the command nodetool status on the individual
node. The output shows that all of the nodes are up and reporting normal status (UN
means “up normal”). Each of the nodes has 256 tokens and a very small amount of
metadata, since you haven’t inserted any data yet. (We’ve shortened the Host ID
somewhat for brevity.)

You run the nodetool ring command in order to get a list of the tokens owned by
each node. To do this in ccm, enter the command:

$ ccm node1 ring

Datacenter: datacenter1
==========
Address Rack Status State ... Token
 9171899284504323785
127.0.0.1 rack1 Up Normal ... -9181802192617819638
127.0.0.2 rack1 Up Normal ... -9119747148344833344
127.0.0.2 rack1 Up Normal ... -9114111430148268761
127.0.0.3 rack1 Up Normal ... -9093245859094984745
127.0.0.2 rack1 Up Normal ... -9093095684198819851

The command requires us to specify a node. This doesn’t affect the output; it just
indicates what node nodetool is connecting to in order to get the ring information.
As you can see, the tokens are allocated randomly across the three nodes. (As before,
we’ve abbreviated the output and omitted the Owns and Load columns for brevity.)

A Closer Look at Cluster Configuration
It’s quite interesting to take a look under the hood to see what configuration changes
ccm makes in order to get a cluster running on your local machine. By default, ccm
stores metadata and configuration files for your clusters in a directory under your
home directory called .ccm; it also uses this directory to store the source files for ver‐
sions of Cassandra you have run. Take a look in this directory to see what you can
find there:

216 | Chapter 10: Configuring and Deploying Cassandra

$ cd ~/.ccm; ls
CURRENT reservation_cluster repository

The repository directory contains the source that ccm downloaded. Diving deeper into
the my_cluster directory, you’ll see a directory for each node:

$ cd reservation_cluster; ls
cluster.conf node1 node2 node3

The cluster.conf file contains a list of options selected when creating the cluster. To see
the configuration options that are different between nodes, try using the diff com‐
mand to compare the contents of the directories. For example:

$ diff node1/conf/ node2/conf/

The output highlights the differences in the configuration files, including the directo‐
ries used for storage of data, commit logs, and output logs, the addresses used for net‐
work communications, and the JMX port exposed for remote management. We’ll
examine these settings in more detail throughout the rest of the chapter.

Adding Nodes to a Cluster
Now that you understand what goes into configuring each node of a Cassandra clus‐
ter, you’re ready to learn how to add nodes. As we’ve already discussed, to add a new
node manually, you need to configure the cassandra.yaml file for the new node to set
the seed nodes, partitioner, snitch, and network ports. If you’ve elected to create
single-token nodes, you’ll also need to calculate the token range for the new node and
make adjustments to the ranges of other nodes.

If you’re using ccm, the process of adding a new node is quite simple. Run the follow‐
ing command:

$ ccm add node4 -i 127.0.0.4 -j 7400

This creates a new node, node4, with another loopback address and JMX port set to
7400. To see additional options for this command, you can type ccm add –h. Now
that you’ve added a node, check the status of your cluster:

$ ccm status
Cluster: 'reservation_cluster'

node1: UP
node3: UP
node2: UP
node4: DOWN (Not initialized)

The new node has been added but has not been started yet. If you run the nodetool
ring command again, you’ll see that no changes have been made to the tokens. Now
you’re ready to start the new node by typing ccm node4 start (after double-checking

Cassandra Cluster Manager | 217

that the additional loopback address is enabled). If you run the nodetool ring com‐
mand once more, you’ll see output similar to the following:

Datacenter: datacenter1
==========
Address Rack Status State ... Token
 9218701579919475223
127.0.0.1 rack1 Up Normal ... −9211073930147845649
127.0.0.4 rack1 Up Normal ... −9190530381068170163
...

If you compare this with the previous output, you’ll notice a couple of things. First,
the tokens have been reallocated across all of the nodes, including the new node. Sec‐
ond, the token values have changed, representing smaller ranges. In order to give
your new node its 256 tokens (num_tokens), there are now 1,024 total tokens in the
cluster.

You can observe what it looks like to other nodes when node4 starts up by examining
the log file. On a standalone node, you might look at the system.log file in /var/log/
cassandra (or $CASSANDRA_HOME/logs), depending on your configuration. ccm
provides a handy command to examine the log files from any node. Look at the log
for node1 using the ccm node1 showlog command. This brings up a view similar to
the standard Unix more command that allows you to page through or search the log
file contents. Searching for gossip-related statements in the log file near the end (for
example, by typing /127.0.0.4), you’ll find something like this:

INFO [GossipStage:1] 2019-11-27 15:40:51,176 Gossiper.java:1222 -
 Node 127.0.0.4:7000 is now part of the cluster
INFO [GossipStage:1] 2019-11-27 15:40:51,203 TokenMetadata.java:490 -
 Updating topology for 127.0.0.4:7000
INFO [GossipStage:1] 2019-11-27 15:40:51,206 StorageService.java:2524 -
 Node 127.0.0.4:7000 state jump to NORMAL
INFO [GossipStage:1] 2019-11-27 15:40:51,213 Gossiper.java:1180 -
 InetAddress 127.0.0.4:7000 is now UP

These statements show node1 successfully gossiping with node4, and that node4 is
considered up and part of the cluster. At this point, the bootstrapping process begins
to allocate tokens to node4 and stream any data associated with those tokens to node4.

Dynamic Ring Participation
Nodes in a Cassandra cluster can be brought down and back up without disrupting
the rest of the cluster (assuming a reasonable replication factor and consistency level).
Say that you’ve started a two-node cluster, as described in “Creating a Cluster” on
page 214. You can cause an error to occur that will take down one of the nodes, and
then make sure that the rest of the cluster is still OK.

218 | Chapter 10: Configuring and Deploying Cassandra

You can simulate this situation by taking one of the nodes down using the ccm stop
command. You can run the ccm status command to verify the node is down, and
then check a log file as you did earlier via the ccm showlog command. If you stop
node4 and examine the log file for another node, you’ll see something like the
following:

INFO [GossipStage:1] 2019-11-27 15:44:09,564 Gossiper.java:1198 -
 InetAddress 127.0.0.4:7000 is now DOWN

Now bring node4 back up and recheck the logs at another node. Sure enough, Cas‐
sandra has automatically detected that the other participant has returned to the clus‐
ter and is again open for business:

INFO [GossipStage:1] 2019-11-27 15:45:34,579 Gossiper.java:1220 -
 Node 127.0.0.4:7000 has restarted, now UP

The state jump to normal for node4 indicates that it’s part of the cluster again. As a
final check, run the status command again:

$ ccm status
Cluster: 'reservation_cluster'

node1: UP
node2: UP
node3: UP
node4: UP

As you see, the node is back up.

Node Configuration
There are many other properties that can be set in the cassandra.yaml file. We’ll look
at a few highlights related to cluster formation, networking, and disk usage in this
chapter, and save some of the others for treatment in Chapter 13 and Chapter 14.

A Guided Tour of the cassandra.yaml File

The Cassandra documentation provides a helpful guide to config‐
uring the various settings in the cassandra.yaml file.

Seed Nodes
A new node in a cluster needs what’s called a seed node. A seed node is used as a con‐
tact point for other nodes, so Cassandra can learn the topology of the cluster—that is,
what hosts have what ranges. For example, if node A acts as a seed for node B, when
node B comes online, it will use node A as a reference point from which to get data.
This process is known as bootstrapping, or sometimes auto-bootstrapping because it is

Node Configuration | 219

https://oreil.ly/t1y3Q

an operation that Cassandra performs automatically. Seed nodes do not auto-
bootstrap because it is assumed that they will be the first nodes in the cluster.

By default, the cassandra.yaml file will have only a single seed entry set to the local
host:

- seeds: "127.0.0.1"

To add more seed nodes to a cluster, just add another seed element. You can set mul‐
tiple servers to be seeds just by indicating the IP address or hostname of the node. For
an example, if you look in the cassandra.yaml file for node3, you’ll find the following:

- seeds: 127.0.0.1, 127.0.0.2, 127.0.0.3

In a production cluster, these would be the IP addresses of other hosts rather than
loopback addresses. To ensure high availability of Cassandra’s bootstrapping process,
it is considered a best practice to have at least two seed nodes in each data center. This
increases the likelihood of having at least one seed node available should one of the
local seed nodes go down during a network partition between data centers.

As you may have noticed if you looked in the cassandra.yaml file, the list of seeds is
actually part of a larger definition of the seed provider. The org.apache.cassan
dra.locator.SeedProvider interface specifies the contract that must be imple‐
mented. Cassandra provides the SimpleSeedProvider as the default implementation,
which loads the IP addresses of the seed nodes from the cassandra.yaml file. If you
use a service registry as part of your infrastructure, you could register seed nodes in
the registry and write a custom provider to consult that registry. This is an approach
commonly used in Kubernetes operators, as we’ll discuss in “Cassandra Kubernetes
Operators” on page 299.

Snitches
Snitches gather some information about your network topology so that Cassandra
can efficiently route requests. The snitch will figure out where nodes are in relation to
other nodes. You configure the endpoint snitch implementation to use by updating
the endpoint_snitch property in the cassandra.yaml file.

Changing the Snitch

You can configure any snitch you prefer on a new cluster, but once
you’ve inserted data into a cluster, changing the snitch may involve
some additional steps, as described in the DataStax documentation.

SimpleSnitch

By default, Cassandra uses org.apache.cassandra.locator.SimpleSnitch. This
snitch is not rack aware (a term we’ll explain in just a minute), which makes it

220 | Chapter 10: Configuring and Deploying Cassandra

https://oreil.ly/0CGoC

unsuitable for multiple data center deployments. If you choose to use this snitch,
you should also use the SimpleStrategy replication strategy for your keyspaces.

PropertyFileSnitch

The org.apache.cassandra.locator.PropertyFileSnitch is a rack-aware
snitch, meaning that it uses information that you provide about the topology of
your cluster as key-value properties in the cassandra-topology.properties configu‐
ration file. Here’s an example configuration:

Cassandra Node IP=Data Center:Rack
175.56.12.105=DC1:RAC1
175.50.13.200=DC1:RAC1
175.54.35.197=DC1:RAC1

120.53.24.101=DC1:RAC2
120.55.16.200=DC1:RAC2
120.57.102.103=DC1:RAC2

default for unknown nodes
default=DC1:RAC1

Notice that there there is a single data center (DC1) with two racks (RAC1 and
RAC2). Any nodes that aren’t identified here will be assumed to be in the default
data center and rack (DC1, RAC1). These are the same rack and data center names
that you will use in configuring the NetworkTopologyStrategy settings per data
center for your keyspace replication strategies.

Update the values in this file to record each node in your cluster to specify the IP
address of each node in your cluster and its location by data center and rack. The
manual configuration required in using the PropertyFileSnitch trades away a
little flexibility and ease of maintenance in order to give you more control and
better runtime performance, as Cassandra doesn’t have to figure out where nodes
are. Instead, you just tell it where they are.

GossipingPropertyFileSnitch

The org.apache.cassandra.locator.GossipingPropertyFileSnitch is
another rack-aware snitch. The data exchanges information about its own rack
and data center location with other nodes via gossip. The rack and data center
locations are defined in the cassandra-rackdc.properties file. The GossipingPro
pertyFileSnitch also uses the cassandra-topology.properties file, if present. This
is simpler to configure since you only have to configure the data center and rack
on each node; for example:

dc=DC1
rack=RAC1

Node Configuration | 221

The GossipingPropertyFileSnitch is the most commonly used snitch for mul‐
tiple data center clusters in private clouds, as well as multicloud clusters.

RackInferringSnitch

The org.apache.cassandra.locator.RackInferringSnitch assumes that nodes
in the cluster are laid out in a consistent network scheme. It operates by simply
comparing different octets in the IP addresses of each node. If two hosts have the
same value in the second octet of their IP addresses, then they are determined to
be in the same data center. If two hosts have the same value in the third octet of
their IP addresses, then they are determined to be in the same rack. This means
that Cassandra has to guess based on an assumption of how your servers are
located in different VLANs or subnets.

DynamicEndpointSnitch

As discussed in Chapter 6, Cassandra wraps your selected snitch with
org.apache.cassandra.locator.DynamicEndpointSnitch to select the highest
performing nodes for queries. The dynamic_snitch_badness_threshold prop‐
erty defines a threshold for changing the preferred node. The default value of 0.1
means that the preferred node must perform 10% worse than the fastest node in
order to lose its status. The dynamic snitch updates this status according to the
dynamic_snitch_update_interval_in_ms property, and resets its calculations at
the duration specified by the dynamic_snitch_reset_interval_in_ms property.
The reset interval should be a much longer interval than the update interval
because it is a more expensive operation, but it does allow a node to regain its
preferred status without having to demonstrate performance superior to the bad‐
ness threshold.

Cassandra also comes with several snitches designed for use in cloud deployments,
such as Ec2Snitch, Ec2MultiRegionSnitch for deployments in Amazon Web Serv‐
ices (AWS), GoogleCloudSnitch for Google Cloud Platform (GCP), and AlibabaS
nitch for Alibaba Cloud. The CloudstackSnitch is designed for use in public or
private cloud deployments based on the Apache Cloudstack project. We’ll discuss sev‐
eral of these snitches in “Cloud Deployment” on page 236.

Partitioners
Now we’ll get into some of the configuration options that are changed less frequently,
starting with the partitioner. You can’t change the partitioner once you’ve inserted
data into a cluster, so take care before deviating from the default!

The purpose of the partitioner is to allow you to specify how partition keys are map‐
ped to token values, which determines how data will be distributed across your
nodes. You set the partitioner by updating the value of the partitioner property in the
cassandra.yaml file.

222 | Chapter 10: Configuring and Deploying Cassandra

Changing the Partitioner

While it is possible to change the partitioner on an existing cluster,
it’s a complex procedure, and the recommended approach is to
migrate data to a new cluster with your preferred partitioner using
techniques we discuss in Chapter 15.

Murmur3Partitioner

The default partitioner is org.apache.cassandra.dht.Murmur3Partitioner,
which uses the murmur hash algorithm to generate tokens. This has the advan‐
tage of spreading partition keys evenly across your cluster, because the distribu‐
tion is random. However, it does inefficient range queries, because keys within a
specified range might be placed in a variety of disparate locations in the ring, and
key range queries will return data in an essentially random order.

New clusters should always use the Murmur3Partitioner. However, Cassandra
provides the additional partitioners listed below for backward compatibility.

RandomPartitioner

The org.apache.cassandra.dht.RandomPartitioner was Cassandra’s default in
Cassandra 1.1 and earlier. It uses a BigIntegerToken with an MD5 cryptographic
hash applied to it to determine where to place the keys on the node ring.
Although the RandomPartitioner and Murmur3Partitioner are both based on
random hash functions, the cryptographic hash used by RandomPartitioner is
considerably slower, which is why the Murmur3Partitioner replaced it as the
default.

OrderPreservingPartitioner

The org.apache.cassandra.dht.OrderPreservingPartitioner represents
tokens as UTF-8 strings calculated from the partition key. Rows are therefore
stored by key order, aligning the physical structure of the data with your sort
order. Configuring your column family to use order-preserving partitioning
(OPP) allows you to perform range slices.

Because of the ordering aspect, users are sometimes attracted to the OrderPreser
vingPartitioner. However, it isn’t actually more efficient for range queries than
random partitioning. More importantly, it has the potential to create an unbal‐
anced cluster with some nodes having more data. These hotspots create an addi‐
tional operational burden—you’ll need to manually rebalance nodes using the
nodetool move operation.

ByteOrderedPartitioner

The ByteOrderedPartitioner is an additional order-preserving partitioner that
treats the data as raw bytes, instead of converting them to strings the way the
order-preserving partitioner and collating order-preserving partitioner do. The

Node Configuration | 223

ByteOrderedPartitioner represents a performance improvement over the
OrderPreservingPartitioner.

Avoiding Partition Hotspots

Although Murmur3Partitioner selects tokens randomly, it can still
be susceptible to hotspots; however, the problem is significantly
reduced compared to the order-preserving partitioners. In order to
minimize hotspots, additional knowledge of the topology is
required. An improvement to token selection was added in 3.0 to
improve the allocation of vnodes. Configuring the allo

cate_tokens_for_local_replication_factor property in cassan‐
dra.yaml with a replication factor for the local data center instructs
the partitioner to optimize token selection based on the specified
number of replicas. This value may vary according to the replica‐
tion factor assigned to the data center for each keyspace, but is
most often 3. This option is only available for the Murmur3Parti
tioner.

Tokens and Virtual Nodes
By default, Cassandra is configured to use virtual nodes (vnodes). The number of
tokens that a given node will service is set by the num_tokens property. Generally this
should be left at the default value, but may be increased to allocate more tokens to
more capable machines, or decreased to allocate fewer tokens to less capable
machines.

How Many vnodes?

Many experienced Cassandra operators have recommended that
the default num_tokens be changed from the historic default of 256
to a lower value such as 16 or even 8. They argue that having fewer
tokens per node provides adequate balance between token ranges,
while requiring significantly less bandwidth to coordinate changes.
The Jira request CASSANDRA-13701 represents a potential change
to this default in a future release.

To disable vnodes and configure the more traditional token ranges, you’ll first need to
set num_tokens to 1, or you may also comment out the property entirely. Then you’ll
need to calculate tokens for each node in the cluster and configure the
initial_token property on each node to indicate the range of tokens that it will own.
There is a handy calculator available at Geroba.com that you can use to calculate
ranges based on the number of nodes in your cluster and the partitioner in use.

224 | Chapter 10: Configuring and Deploying Cassandra

https://oreil.ly/-PPRi
https://oreil.ly/qhNL4

In general, we recommend using vnodes, due to the effort required to recalculate
token assignments and manually reconfigure the tokens to rebalance the cluster when
adding or deleting single-token nodes.

Network Interfaces
There are several properties in the cassandra.yaml file that relate to the networking of
the node. Cassandra uses separate ports and protocols for internode and client-to-
node communications. Let’s look at the internode settings first:

listen_address

The listen_address controls which IP address Cassandra listens on for incom‐
ing connections from other nodes. You can see how this is configured in your
ccm cluster, as follows:

$ cd ~/.ccm
$ find . -name cassandra.yaml -exec grep -H 'listen_address' {} \;
./node1/conf/cassandra.yaml:listen_address: 127.0.0.1
./node2/conf/cassandra.yaml:listen_address: 127.0.0.2
./node3/conf/cassandra.yaml:listen_address: 127.0.0.3

If you’d prefer to bind via an interface name, you can use the listen_interface
property instead of listen_address. For example, listen_interface=eth0. You
may not set both of these properties. If you leave this property undefined, Cas‐
sandra will assign an address based on the Java method InetAddress.getLocal
Host(). See the instructions in the cassandra.yaml file for more details.

broadcast_address

The broadcast_address is the IP address advertised to other nodes. If not set, it
defaults to the listen_address. This is typically overridden in multiple data cen‐
ter configurations where there is a need to communicate within a data center
using private IP addresses, but across data centers using public IP addresses. Set
the listen_on_broadcast_address property to true to enable the node to com‐
municate on both interfaces.

storage_port

The storage_port property designates the port used for internode communica‐
tions, typically 7000. If you will be using Cassandra in a network environment
that traverses public networks, or multiple regions in a cloud deployment, you
should configure the ssl_storage_port (typically 7001). Configuring the secure
port also requires configuring internode encryption options, which we’ll discuss
in Chapter 14.

Now let’s consider the client-to-node settings. The term native transport refers to the
transport that clients use to communicate with Cassandra nodes via CQL:

Node Configuration | 225

rpc_address

The rpc_address is the IP address to which the native transport is bound. If not
set, Cassandra assigns a default using the same approach used for the default lis
ten_address. Alternatively, you may set the rpc_interface property to bind to a
named interface.

broadcast_rpc_address

The broadcast_rpc_address is the IP address advertised to clients for the native
transport. If not set, it defaults to the rpc_address.

native_transport_port

The native transport defaults to port 9042, as specified by the native_trans
port_port property.

The rpc_keepalive property defaults to true, which means that Cassandra will
allow clients to hold connections open across multiple requests. Other properties
are available to limit the threads, connections, and frame size, which we’ll exam‐
ine in Chapter 13.

Deprecation of Thrift RPC Properties

Historically, Cassandra supported two different client interfaces:
the original Thrift API, also known as the Remote Procedure Call
(RPC) interface, and the CQL native transport first added in 0.8.
For releases through 2.2, both interfaces were supported and
enabled by default. Starting with the 3.0 release, Thrift was disabled
by default and has been removed entirely as of the 4.0 release. If
you’re using an earlier version of Cassandra, know that properties
prefixed with rpc generally refer to the Thrift interface, but to sim‐
plify upgrading from older versions, properties such as
rpc_address, rpc_interface, and broadcast_rpc_address now
apply to the native transport.

Data Storage
Cassandra allows you to configure how and where its various datafiles are stored on
disk, including datafiles, commit logs, hints, and saved caches. The default is the
data directory under your Cassandra installation ($CASSANDRA_HOME/data or
%CASSANDRA_HOME%/data).

You’ll remember from Chapter 6 that the commit log is used as short-term storage for
incoming writes. As Cassandra receives updates, every write value is written immedi‐
ately to the commit log in the form of raw sequential file appends. If you shut down
the database or it crashes unexpectedly, the commit log can ensure that data is not
lost. That’s because the next time you start the node, the commit log gets replayed. In

226 | Chapter 10: Configuring and Deploying Cassandra

fact, that’s the only time the commit log is read; clients never read from it. Commit
logs are stored in the location specified by the commitlog_directory property.

The datafile represents the Sorted String Tables (SSTables). Unlike the commit log,
data is written to this file asynchronously. The SSTables are periodically merged dur‐
ing major compactions to free up space. To do this, Cassandra will merge keys, com‐
bine columns, and delete expired tombstones.

Datafiles are stored in the location specified by the data_file_directories property.
You can specify multiple values if you wish, and Cassandra will spread the datafiles
evenly across them. This is how Cassandra supports a “just a bunch of disks” (JBOD)
deployment, where each directory represents a different disk mount point. You can
read about the pros and cons of JBOD configuration in Anthony Grasso’s blog post.

Other configuration options are available to override the locations of saved key and
row caches, and change data capture logs, which are discussed in Chapter 9 and
Chapter 15, respectively.

Storage File Locations on Windows

You don’t need to update the default storage file locations for Win‐
dows, because Windows will automatically adjust the path separa‐
tor and place them under C:\. Of course, in a real environment, it’s
a good idea to specify them separately, as indicated.

For testing, you might not see a need to change these locations. However, in produc‐
tion environments using spinning disks, it’s recommended that you store the datafiles
and the commit logs on separate disks for maximum performance and availability.

Cassandra is robust enough to handle loss of one or more disks without an entire
node going down, but gives you several options to specify the desired behavior of
nodes on disk failure. The behavior on disk failure impacting datafiles is specified by
the disk_failure_policy property, while failure response for commit logs is speci‐
fied by commit_failure_policy. The default behavior stop is to disable client inter‐
faces while remaining alive for inspection via JMX. Other options include die, which
stops the node entirely (JVM exit), and ignore, which means that filesystem errors
are logged and ignored. Use of ignore is not recommended. The best_effort option
is available for datafiles, allowing operations on SSTables stored on disks that are still
available.

Startup and JVM Settings
So far, this chapter has focused on settings in the cassandra.yaml file, but there are
other configuration files you should examine as well. Cassandra’s startup scripts

Node Configuration | 227

https://oreil.ly/Z-xIE

embody a lot of hard-won logic to optimize configuration of the various options for
your chosen JVM (recall the note on “Required Java Version” from Chapter 3).

The key file to look at is conf/jvm.options. This file contains settings to configure the
JVM version (if multiple versions are available on your system), heap size, and other
JVM options. Most of these options you’ll rarely need to change from their default
settings, with the possible exception of the JMX settings. The environment script
allows you to set the JMX port and configure security settings for remote JMX access.
We’ll examine these settings in more detail in Chapter 13.

Cassandra’s logging configuration is found in the conf/logback.xml file. This file
includes settings such as the log level, message formatting, and log file settings,
including locations, maximum sizes, and rotation. Cassandra uses the Logback log‐
ging framework, which you can learn more about at http://logback.qos.ch. The logging
implementation was changed from Log4j to Logback in the 2.1 release.

We’ll examine logging and JMX configuration in more detail in Chapter 11, and JVM
memory configuration in Chapter 13.

Creating a Cluster in Docker
We discussed how to create a single Cassandra node in a Docker container in Chap‐
ter 3. It’s also simple to create a small cluster on your local machine from multiple
Docker containers. Let’s say you want to create a cluster that runs on its own network
but exposes the standard CQL port for application access. First, you’ll need to create a
Docker network, which could be as simple as:

$ docker network create my-network

Then you can create Cassandra nodes attached to that network, using the CASSAN
DRA_SEEDS environment variable to specify a seed node for nodes after the first:

$ docker run --name node1 --network my-network -p 9042:9042 -d cassandra
$ docker run --name node2 -d --network my-network -p 9042:9042 -d
 -e CASSANDRA_SEEDS=node1 cassandra
$ docker run --name node3 -d --network my-network -p 9042:9042 -d
 -e CASSANDRA_SEEDS=node1,node2 cassandra
...

There are additional environment variables you can use to override configuration set‐
tings, including the listen and broadcast addresses, the cluster name, the number of
vnodes (num_tokens), and the snitch. If you set CASSANDRA_ENDPOINT_SNITCH=Gossi
pingPropertyFileSnitch, you may also set the data center and rack via the environ‐
ment variables CASSANDRA_DC and CASSANDRA_RACK, respectively.

Alternatively, you could override the entire cassandra.yaml file with a file on your
host:

228 | Chapter 10: Configuring and Deploying Cassandra

http://logback.qos.ch

$ docker run <other options> cassandra
 -Dcassandra.config=/path/to/cassandra.yaml

When running Cassandra in Docker, you’ll want to remember that storage for Docker
containers is ephemeral by default. If you delete a container, its data will be lost as
well. If you desire to maintain your data beyond the container life cycle, you can
mount a directory on your host as the Cassandra data directory in the image:

$ docker run <other options> -v /path/to/datadir:/var/lib/cassandra cassandra

You can find additional options for running the Cassandra Docker image on Docker
Hub.

Planning a Cluster Deployment
Now that you’ve learned some of the basics of configuring nodes and forming a small
cluster, let’s move toward configuring more complex deployments.

A successful deployment of Cassandra starts with good planning. You’ll want to con‐
sider the topology of the cluster in data centers and racks, the amount of data that the
cluster will hold, the network environment in which the cluster will be deployed, and
the computing resources (whether physical or virtual) on which the instances will
run. This section will consider each of these factors in turn.

Cluster Topology and Replication Strategies
The first thing to consider is the topology of the cluster. This includes factors such as
how many data centers the cluster will span, and the location and ownership of these
clusters. Many Cassandra deployments span multiple data centers in order to maxi‐
mize data locality, comply with data protection regulations such as the European
Union’s General Data Protection Regulation (GDPR), or isolate workloads. Some of
the common variations include:

• Clusters that span one or more private data centers.
• Clusters that span one or more data centers in a public cloud provider, such as

Amazon Web Services, Google Cloud Platform, Microsoft Azure, Alibaba Cloud,
and others.

• Hybrid cloud clusters that span both public cloud and private data centers. These
are commonly used for deployments that run core workloads on private infra‐
structure but use public clouds to add capacity during seasons of peak usage.

• Multicloud or intercloud clusters that span multiple public cloud providers. These
deployments are frequently used to locate data close to customers in geographic

Planning a Cluster Deployment | 229

https://oreil.ly/XCYfa
https://oreil.ly/XCYfa

areas unique to a particular cloud provider region, or close to services that are
provided by a specific public cloud.

In addition to these options, it’s a common practice to use additional data centers in a
Cassandra cluster that are separated logically (if not physically) in order to isolate
particular workloads, such as analytic or search integrations. You’ll see some of these
configurations in Chapter 15.

The cluster topology dictates how you configure the replication strategy for the key‐
spaces the cluster will contain. The choice of replication strategy determines which
nodes are responsible for which key ranges. The first replica will always be the node
that claims the range in which the token falls, but the remainder of the replicas are
placed according to your replication strategy and cluster topology. Let’s examine the
implication of the two commonly used replication strategies you learned in Chap‐
ter 6, the SimpleStrategy and NetworkTopologyStrategy.

First, the SimpleStrategy is designed to place replicas in a single data center, in a
manner that is not aware of their placement on a data center rack. This is shown in
Figure 10-1.

Figure 10-1. The SimpleStrategy places replicas in a single data center, without respect
to topology

230 | Chapter 10: Configuring and Deploying Cassandra

What’s happening here is that the next N nodes on the ring are chosen to hold repli‐
cas, and the strategy has no notion of data centers. A second data center is shown in
the diagram to highlight the fact that the strategy is unaware of it.

Now let’s say you want to spread replicas across multiple data centers in case one of
the centers suffers some kind of catastrophic failure or network outage. The Network
TopologyStrategy allows you to request that some replicas be placed in DC1, and
some in DC2. Within each data center, the NetworkTopologyStrategy distributes
replicas on distinct racks, because nodes in the same rack (or similar physical group‐
ing) often fail at the same time due to power, cooling, or network issues.

The NetworkTopologyStrategy distributes the replicas as follows: the first replica is
placed according to the selected partitioner. Subsequent replicas are placed by tra‐
versing the nodes in the ring, skipping nodes in the same rack until a node in another
rack is found. The process repeats for additional replicas, placing them on separate
racks. Once a replica has been placed in each rack, the skipped nodes are used to
place replicas until the replication factor has been met.

The NetworkTopologyStrategy allows you to specify a replication factor for each
data center. Thus, the total number of replicas that will be stored is equal to the sum
of the replication factors for each data center. The results of the NetworkTopology
Strategy are depicted in Figure 10-2.

Figure 10-2. The NetworkTopologyStrategy places replicas in multiple data centers
according to the specified replication factor per data center

Planning a Cluster Deployment | 231

To take advantage of additional data centers, you’ll need to update the replication
strategy for the keyspaces in your cluster accordingly. For example, you might issue
an ALTER KEYSPACE command to change the replication strategy for the reservation
keyspace used by the Reservation Service:

cqlsh> ALTER KEYSPACE reservation
 WITH REPLICATION = {'class' : 'NetworkTopologyStrategy',
 'DC1' : '3', 'DC2' : '3'};

Changing the Cluster Topology

While planning the cluster topology and replication strategy is an
important design task, you’re not locked into a specific topology
forever. When you take actions to add or remove data centers or
change replication factors within a data center, these are mainte‐
nance operations that will require tasks that include running
repairs on affected nodes. You’ll learn about nodetool commands
that help perform tasks such as repair and cleanup in Chapter 12.

Sizing Your Cluster
To properly size your cluster, you’ll want to consider the amount of data that your
cluster will need to store, as well as the expected read and write load and latency
goals, which we’ll address in Chapter 13. You will, of course, be able to add and
remove nodes from your cluster to adjust its capacity over time, but calculating the
initial and planned size over time will help you better anticipate costs and make
sound decisions as you plan your cluster configuration.

To calculate the required size of the cluster, you’ll first need to determine the storage
size of each of the supported tables using the formulas introduced in Chapter 5. This
calculation is based on the columns within each table as well as the estimated number
of rows, and results in an estimated size of one copy of your data on disk.

In order to estimate the actual physical amount of disk storage required for a given
table across your cluster, you’ll also need to consider the replication factor for the
table’s keyspace and the compaction strategy in use. The resulting formula for the
total size Tt is as follows:

Tt = St × RFk × CSFt

Where St is the size of the table calculated using the formula referenced here, RFk is
the replication factor of the keyspace, and CSFt is a factor representing the compac‐
tion strategy of the table, whose value is as follows:

232 | Chapter 10: Configuring and Deploying Cassandra

• 2 for the SizeTieredCompactionStrategy. The worst-case scenario for this strat‐
egy is that there is a second copy of all the data required for a major compaction.

• 1.25 for other compaction strategies, which have been estimated to require 20%
overhead during a major compaction. The actual overhead will vary based on
your data, but this is a reasonable starting point.

Once you know the total physical disk size of the data for all tables, you can then sum
those values across all keyspaces and tables to arrive at the total data size for the
cluster.

You can then divide this total by the amount of usable storage space per disk to esti‐
mate a required number of disks. A reasonable estimate for the usable storage space
of a disk is 90% of the disk size. Historically, Cassandra operators have recommended
1 TB as a maximum data size per node. This tends to provide a good balance between
compute costs and time to complete operations such as compaction or streaming data
to a new or replaced node. This may change in future releases.

Note that this calculation is based on the assumption of providing enough overhead
on each disk to handle a major compaction of all keyspaces and tables. It’s possible to
reduce the required overhead if you can ensure such a major compaction will never
be executed by an operations team, but this seems like a risky assumption. Another
item to note is that this calculation does not take compression of SStables into
account, which is an option we’ll discuss in Chapter 14.

Sizing Cassandra’s System Keyspaces

Alert readers may wonder about the disk space devoted to Cassan‐
dra’s internal data storage in the various system keyspaces. This is
typically insignificant when compared to the size of the disk. For
example, you just created a three-node cluster and measured the
size of each node’s data storage at about 18 MB with no additional
keyspaces.
Although this could certainly grow considerably if you are making
frequent use of tracing, the system_traces tables do use TTL to
allow trace data to expire, preventing these tables from overwhelm‐
ing your data storage over time.

Once you’ve calculated the required size and number of nodes, you’ll be in a better
position to decide on an initial cluster size. The amount of capacity you build into
your cluster is dependent on how quickly you anticipate growth, which must be bal‐
anced against cost of additional hardware, whether it be physical or virtual.

Planning a Cluster Deployment | 233

Selecting Instances
It is important to choose the right computing resources for your Cassandra nodes,
whether you’re running on physical hardware or in a virtualized cloud environment.
The recommended computing resources for modern Cassandra releases (2.0 and
later) tend to differ for development versus production environments:

Development environments
Cassandra nodes in development environments should generally have CPUs with
at least two cores and 8 GB of memory. Although Cassandra has been success‐
fully run on smaller processors such as Raspberry Pi with 512 MB of memory,
this does require a significant performance-tuning effort.

Production environments
Cassandra nodes in production environments should have CPUs with at least
eight cores and at least 32 GB of memory. Having additional cores and memory
tends to increase the throughput of both reads and writes.

Storage
There are a few factors to consider when selecting and configuring storage, including
the type and quantities of drives to use:

HDDs versus SSDs
Cassandra supports both hard disk drives (HDDs, also called spinning drives) and
solid state drives (SSDs) for storage. Although Cassandra’s usage of append-based
writes is conducive to sequential writes on spinning drives, SSDs provide higher
performance overall because of their support for low-latency random reads.

Historically, HDDs have been the more cost-effective storage option, but the cost
of using SSDs has continued to come down, especially as more and more cloud
platform providers support this as a storage option. As appropriate for your
deployment, configure the disk_optimization_strategy in the cassandra.yaml
file to either ssd (the default) or spinning.

Disk configuration
If you’re using spinning disks, it’s best to use separate disks for data and commit
log files. If you’re using SSDs, the data and commit log files can be stored on the
same disk.

JBOD versus RAID
Using servers with multiple disks is a recommended deployment pattern, with
Just a Bunch of Disks (JBOD) or Redundant Array of Independent Disks (RAID)
configurations. Because Cassandra uses replication to achieve redundancy across
multiple nodes, the RAID 0 (or striped volume) configuration is considered

234 | Chapter 10: Configuring and Deploying Cassandra

sufficient. The JBOD approach provides the best overall performance and is a
good choice if you have the ability to replace individual disks.

Use caution when considering shared storage
The standard recommendation for Cassandra deployments has been to avoid
using storage area networks (SAN) and network-attached storage (NAS). These
storage technologies don’t scale as effectively as local storage—they consume
additional network bandwidth in order to access the physical storage over the
network, and they require additional I/O wait time on both reads and writes.
However, we’ll consider possible exceptions to this rule in “Cloud Deployment”
on page 236.

Network
Because Cassandra relies on a distributed architecture involving multiple networked
nodes, here are a few things you’ll need to consider:

Throughput
First, make sure your network is sufficiently robust to handle the traffic associ‐
ated with distributing data across multiple nodes. The recommended network
bandwidth is 1 Gbps or higher.

Network configuration
Make sure that you’ve correctly configured firewall rules and IP addresses for
your nodes and network appliances to allow traffic on the ports used for the CQL
native transport, internode communication (the listen_address), JMX, and so
on. This includes networking between data centers (we’ll discuss cluster topology
momentarily). It’s recommended to run internode and client-to-node traffic on
different interfaces.

The clocks on all nodes and clients should be synchronized using the Network
Time Protocol (NTP) or other methods. Remember that Cassandra only over‐
writes columns if the timestamp for the new value is more recent than the time‐
stamp of the existing value. Without synchronized clocks, writes from nodes or
clients that lag behind can be lost.

Avoid load balancers
Load balancers are a feature of many computing environments. While these are
frequently useful to spread incoming traffic across multiple service or application
instances, it’s not recommended to use load balancers with Cassandra. Cassandra
already provides its own mechanisms to balance network traffic between nodes,
and the DataStax drivers spread client queries across replicas, so strictly speaking
a load balancer won’t offer any additional help. Besides this, putting a load bal‐
ancer in front of your Cassandra nodes potentially introduces a single point of
failure, which could reduce the availability of your cluster.

Planning a Cluster Deployment | 235

Timeouts
If you’re building a cluster that spans multiple data centers, it’s a good idea to
measure the latency between data centers and tune timeout values in the cassan‐
dra.yaml file accordingly.

A proper network configuration is key to a successful Cassandra deployment,
whether it is in a private data center, a public cloud spanning multiple data centers, or
even a hybrid cloud environment.

Cloud Deployment
Now that you’ve learned the basics of planning a cluster deployment, let’s examine
options for deploying Cassandra in some of the most popular public cloud providers.

There are a couple of key advantages that you can realize by using commercial cloud
computing providers. First, you can select from multiple data centers in order to
maintain high availability. If you extend your cluster to multiple data centers in an
active-active configuration and implement a sound backup strategy, you can avoid
having to create a separate disaster recovery system.

Second, using commercial cloud providers allows you to situate your data in data
centers that are closer to your customer base, thus improving application response
time. If your application’s usage profile is seasonal, you can expand and shrink your
clusters in each data center according to the current demands.

You may want to save time by using a prebuilt image that already contains Cassandra.
There are also companies that provide Cassandra as a managed service in a Software-
as-a-Service (SaaS) offering, as discussed in Chapter 3.

Don’t Forget Cloud Resource Costs

In planning a public cloud deployment, you’ll want to make sure to
estimate the cost to operate your cluster. Don’t forget to account for
resources, including compute services, node and backup storage,
and networking.

Amazon Web Services
Amazon Web Services (AWS) has long been a popular deployment option for Cas‐
sandra, as evidenced by the presence of AWS-specific extensions in the Cassandra
project, such as the Ec2Snitch, Ec2MultiRegionSnitch, and EC2MultiRegionAddres
sTranslator in the DataStax Java Driver:

236 | Chapter 10: Configuring and Deploying Cassandra

Cluster layout
AWS is organized around the concepts of regions and availability zones, which
are typically mapped to the Cassandra constructs of data centers and racks,
respectively. A sample AWS cluster topology spanning the us-east-1 (Virginia)
and eu-west-1 (Ireland) regions is shown in Figure 10-3. The node names are
notional—this naming is not a required convention.

Figure 10-3. Topology of a cluster in two AWS regions

EC2 instances
The Amazon Elastic Compute Cloud (EC2) provides a variety of different virtual
hardware instances grouped according to various classes. The two classes most
frequently recommended for production Cassandra deployments are the C-class
and the I-class, while the more general-purpose T-class and M-class instances are
suitable for development and smaller production clusters.

The I-class instances are SSD-backed and designed for high I/O. These instances
are ideal when using ephemeral storage, while the C-class instances are compute-
optimized and suitable when using block storage. We’ll discuss these storage
options later in this section.

You can find more information about the various instance types available at
https://oreil.ly/yRTrq.

Cloud Deployment | 237

https://oreil.ly/yRTrq

Bitnami provides prebuilt Amazon Machine Images (AMIs) to simplify deploy‐
ment, which you can find on its website or in the AWS Martketplace.

Data storage
The two options for storage in AWS EC2 are ephemeral storage attached to vir‐
tual instances and Amazon Elastic Block Store (EBS). The right choice for your
deployment depends on factors that include cost and operations.

The lower-cost option is to use ephemeral storage. The drawback of this is that if
an instance on which a node is running is terminated (as happens occasionally in
AWS), the data is lost.

Alternatively, EBS volumes are a reliable place to store data that doesn’t go away
when EC2 instances are dropped, and you can enable encryption on your vol‐
umes. However, reads will have some additional latency and your costs will be
higher than ephemeral storage.

AWS services such as Amazon Simple Storage Service (S3) and Amazon S3 Gla‐
cier are a good option for short- to medium-term and long-term storage of back‐
ups, respectively. On the other hand, it is quite simple to configure automatic
backups of EBS volumes, which simplifies backup and recovery. You can create a
new EBS volume from an existing snapshot.

Networking
If you’re running a multiregion configuration, you’ll want to make sure you have
adequate networking between the regions. Many have found that using elements
of the Amazon Virtual Private Cloud (VPC) provides an effective way of achiev‐
ing reliable, high-throughput connections between regions. AWS Direct Connect
provides dedicated private networks, and there are virtual private network (VPN)
options available as well. These services, of course, come at an additional cost.

If you have a single region deployment or a multiregion deployment using VPC
peering, you can use the Ec2Snitch. If you have a multiregion deployment that
uses public IP between regions, use the Ec2MultiRegionSnitch. Both EC2
snitches use the cassandra-rackdc.properties file, with data centers named after
AWS regions (i.e., us-east-1) and racks named after availability zones (i.e., us-
east-1a). Use the GossipingPropertyFileSnitch if you anticipate including
data centers outside of AWS in your cluster.

238 | Chapter 10: Configuring and Deploying Cassandra

https://oreil.ly/6TA5u
https://oreil.ly/_zUiB

Use Scripting to Automate Cassandra Deployments

If you find yourself operating a cluster with more than just a few
nodes, you’ll want to start thinking about automating deployment
as well as other cluster maintenance tasks we’ll consider in Chap‐
ter 12. A best practice is to use a scripting approach, sometimes
known as “Infrastructure as Code.” For example, if using AWS
CloudFormation, you might create a single CloudFormation tem‐
plate that describes the deployment of Cassandra nodes within a
data center, and then reuse that in a CloudFormation StackSet to
describe a cluster deployed in multiple AWS regions.
To get a head start on building scripts using tools like Puppet, Chef,
Ansible, and Terraform, you can find plenty of open source exam‐
ples on repositories such as GitHub and the DataStax Examples
page.

Additional guidance for deploying Cassandra on AWS can be found on the AWS
website.

Google Cloud Platform
Google Cloud Platform (GCP) provides cloud computing, application hosting, net‐
working, storage, and various Software-as-a-Service (SaaS) offerings. In particular,
GCP is well known for its big data and Cloud Machine Learning services. You may
wish to deploy (or extend) a Cassandra cluster into GCP to bring your data closer to
these services:

Cluster layout
The Google Compute Engine (GCE) provides regions and zones, corresponding
to Cassandra’s data centers and racks, respectively. Similar conventions for cluster
layout apply as in AWS. Google Cloud Stackdriver also provides a nice Cassandra
integration for collecting and analyzing metrics.

Virtual machine instances
You can launch Cassandra quickly on the Google Cloud Platform using the
Cloud Launcher. For example, if you search the launcher at the Google Cloud
Platform site, you’ll find options for creating a cluster in just a few button clicks
based on available VM images.

If you’re going to build your own images, GCE’s n1-standard and n1-highmem
machine types are recommended for Cassandra deployments.

Data storage
GCE provides a variety of storage options for instances ranging from local spin‐
ning disk, and SSD options for both ephemeral drives and network-attached
drives.

Cloud Deployment | 239

https://oreil.ly/1cwDq
https://oreil.ly/1cwDq
https://github.com/
https://oreil.ly/ZCigV
https://oreil.ly/ZCigV
https://oreil.ly/9Cr3M
https://oreil.ly/9Cr3M
https://oreil.ly/sJsRk
https://oreil.ly/sJsRk
https://oreil.ly/kZMmq

Networking
You can deploy your cluster in a single global VPC network that can span regions
on Google’s private network. You can also create connections between your own
data centers and a Google VPC using Dedicated Interconnect or Partner Inter‐
connect.

The GoogleCloudSnitch is a custom snitch designed just for the GCE, which also
uses the cassandra-rackdc.properties file. The snitch may be used in a single region or
across multiple regions. VPN networking is available between regions.

Microsoft Azure
Microsoft Azure is known as a cloud that is particularly well suited for enterprises,
partly due to the large number of supported regions. Similar to GCP, there are a num‐
ber of quick deployment options available in the Azure Marketplace:

Cluster layout
Azure provides data centers in locations worldwide, using the same term region
as AWS. The concept of availability sets is used to manage collections of VMs.
Azure manages the assignment of the VMs in an availability set across update
domains, which equate to Cassandra’s racks.

Virtual machine instances
The Azure Resource Manager is recommended if you will be managing
your own cluster deployments, since it enables specifying required resources
declaratively.

Similar to AWS, Azure provides several classes of VMs. The D series VMs pro‐
vide general-purpose, SSD-backed instances appropriate for most Cassandra
deployments. The H series VMs provide additional memory as might be required
for integrations such as the Apache Spark integration described in Chapter 15.
You can find more information about Azure VM types on the Azure site.

Data storage
Azure provides SSD, Premium SSD, and HDD options on the previously men‐
tioned instances. Premium SSDs are recommended for Cassandra nodes.

Networking
There is not a dedicated snitch for Azure. Instead, use the GossipingPropertyFi
leSnitch to allow your nodes to detect the cluster topology. For networking you
may use public IPs, VPN gateways, or Azure Virtual Network (VNet) peering.
VNet peering is recommended as the best option, with peering of VNets within a
region or global peering across regions available.

240 | Chapter 10: Configuring and Deploying Cassandra

https://oreil.ly/nGzDw
https://oreil.ly/X_XG4

Summary
In this chapter, you learned how to create Cassandra clusters and add additional
nodes to a cluster. You learned how to configure Cassandra nodes via the cassan‐
dra.yaml file, including setting the seed nodes, the partitioner, the snitch, and other
settings. You also learned how to configure replication for a keyspace and how to
select an appropriate replication strategy. Finally, you learned how to plan a cluster
and deploy in environments, including multiple public clouds. Now that you’ve
deployed your first cluster, you’re ready to learn how to monitor it.

Summary | 241

CHAPTER 11

Monitoring

The term observability is often used to describe a desirable attribute of distributed
systems. Observability means having visibility into the various components of a sys‐
tem in order to detect, predict, and perhaps even prevent the complex failures that
can occur in distributed systems. Failures in individual components can affect other
components in turn, and multiple failures can interact in unforeseen ways, leading to
system-wide outages. Common elements of an observability strategy for a system
include metrics, logging, and tracing.

In this chapter, you’ll learn how Cassandra supports these elements of observability
and how to use available tools to monitor and understand important events in the life
cycle of your Cassandra cluster. We’ll look at some simple ways to see what’s going on,
such as changing the logging levels and understanding the output.

To begin, let’s discuss how Cassandra uses the Java Management Extensions (JMX) to
expose information about its internal operations and allow the dynamic configura‐
tion of some of its behavior. That will give you a basis to learn how to monitor Cas‐
sandra with various tools.

Monitoring Cassandra with JMX
Cassandra makes use of JMX to enable remote management of your nodes. JMX
started as Java Specification Request (JSR) 160 and has been a core part of Java since
version 5.0. You can read more about the JMX implementation in Java by examining
the java.lang.management package.

JMX is a Java API that provides management of applications in two key ways. First, it
allows you to understand your application’s health and overall performance in terms
of memory, threads, and CPU usage—things that apply to any Java application.

243

Second, it allows you to work with specific aspects of your application that you have
instrumented.

Instrumentation refers to putting a wrapper around application code that provides
hooks from the application to the JVM in order to allow the JVM to gather data that
external tools can use. Such tools include monitoring agents, data analysis tools, pro‐
filers, and more. JMX allows you not only to view such data but also, if the applica‐
tion enables it, to manage your application at runtime by updating values.

Many popular Java applications are instrumented using JMX, including the JVM
itself, the Tomcat application server, and Cassandra. Figure 11-1 shows the JMX
architecture as used by Cassandra.

Figure 11-1. The JMX architecture

The JMX architecture is simple. The JVM collects information from the underlying
operating system. The JVM itself is instrumented, so many of its features are exposed,
including memory management and garbage collection, threading and deadlock
detection, classloading, and logging.

An instrumented Java application (such as Cassandra) runs on top of this, also expos‐
ing some of its features as manageable objects. The Java Development Kit (JDK)
includes an MBean server that makes the instrumented features available over a
remote protocol to a JMX management application. The JVM also offers manage‐
ment capabilities via the Simple Network Monitoring Protocol (SNMP), which may
be useful if you are using SMTP monitoring tools such as Nagios or Zenoss.

244 | Chapter 11: Monitoring

Connecting Remotely via JMX

By default, Cassandra runs with JMX enabled for local access only.
To enable remote access, edit the file <cassandra-home>/cassandra-
env.sh (or cassandra-env.ps1 on Windows). Search for “JMX” to
find the section of the file with options to control the JMX port and
other local/remote connection settings. For example, in public
cloud deployments it is often required to override the setting of the
java.rmi.server.hostname command-line argument passed to
the JVM to enable remote clients to access JMX.

Within a given application, you can manage only what the application developers
have made available for you to manage. Luckily, the Cassandra developers have
instrumented large parts of the database engine, making management via JMX fairly
straightforward.

JMX Clients
In this chapter we’ll focus on Nodetool, but there are plenty of other JMX clients
available:

JConsole
The JConsole tool ships with the standard Java Development Kit. It provides a
graphical user interface client for working with MBeans and can be used for local
or remote management. JConsole is an easy choice when you’re looking for a
JMX client, because it’s easy to use and doesn’t require a separate install.

Oracle Java Mission Control and Visual VM
These tools also ship with the Oracle JDK and provide more robust metrics,
diagnostics, and visualizations for memory usage, threads, garbage collection,
and others. The main comparison between the two is that Visual VM is an open
source project available under the GNU license, while Mission Control provides
a deeper level of integration with the Oracle JVM via a framework called Flight
Control.

Java Mission Control can be run via the command $JAVA_HOME/bin/jmc, and
Visual VM via the command $JAVA_HOME/bin/jvisualvm. Both are suitable for
usage in development and production environments.

MX4J
The Management Extensions for Java (MX4J) project provides an open source
implementation of JMX, including tooling, such as an embedded web interface to
JMX using HTTP/HTML. This allows interactions with JMX via a standard web
browser.

Monitoring Cassandra with JMX | 245

To integrate MX4J into a Cassandra installation, download the mx4j_tools.jar
library, save the JAR file in the lib directory of your Cassandra installation, and
configure the MX4J_ADDRESS and MX4J_PORT options in conf/cassandra-env.sh.

Jmxterm
Jmxterm is a command-line JMX client that allows access to a JMX server
without a graphical interface. This can be especially useful when working in
cloud environments, as the graphical tools are typically more resource intensive.

Jmxterm is an open source Java project available from the CyclopsGroup.

IDE Integrations
You can also find JMX clients that integrate with popular IDEs; for example,
eclipse-jmx.

Cassandra’s MBeans
A managed bean, or MBean, is a special type of Java bean that represents a single
manageable resource inside the JVM. MBeans interact with an MBean server to make
their functions remotely available. Many classes in Cassandra are exposed as MBeans,
which means in practical terms that they implement a custom interface that describes
attributes they expose and operations that need to be implemented and for which the
JMX agent will provide hooks.

public interface CompactionManagerMBean
{
 public List<Map<String, String>> getCompactions();
 public List<String> getCompactionSummary();
 public TabularData getCompactionHistory();

 public void forceUserDefinedCompaction(String dataFiles);
 public void stopCompaction(String type);
 public void stopCompactionById(String compactionId);

 public int getCoreCompactorThreads();
 public void setCoreCompactorThreads(int number);

 ...
}

Some simple values in the application are exposed as attributes. An example of this is
the coreCompactorThreads attribute, for which getter and setter operations are pro‐
vided. Other attributes that are read-only are the current compactions in progress,
the compactionSummary, and the compactionHistory. You can refresh to see the most
recent values, but that’s pretty much all you can do with them. Because these values
are maintained internally in the JVM, it doesn’t make sense to set them externally
(they’re derived from actual events, and are not configurable).

246 | Chapter 11: Monitoring

http://mx4j.sourceforge.net/
http://mx4j.sourceforge.net/
https://oreil.ly/bqnE3
https://oreil.ly/N68Rl

MBeans can also make operations available to the JMX agent that let you execute
some useful action. The forceUserDefinedCompaction() and stopCompaction()
methods are operations that you can use to force a compaction to occur or stop a
running compaction from a JMX client.

As you can see by this MBean interface definition, there’s no magic going on. This is
just a regular interface defining the set of operations. The CompactionManager class
implements this interface and does the work of registering itself with the MBean
server for the JMX attributes and operations that it maintains locally:

public static final String MBEAN_OBJECT_NAME =
 "org.apache.cassandra.db:type=CompactionManager";

static
{
 instance = new CompactionManager();
 MBeanWrapper.instance.registerMBean(instance, MBEAN_OBJECT_NAME);
}

Note that the MBean is registered in the domain org.apache.cassandra.db with a
type of CompactionManager. The attributes and operations exposed by this MBean
appear under org.apache.cassandra.db > CompactionManager in JMX clients.

In the following sections, you’ll learn about some of the key MBeans that Cassandra
exposes to allow monitoring and management via JMX. Many of these MBeans corre‐
spond to the services and managers introduced in Chapter 6. In most cases, the oper‐
ations and attributes exposed by the MBeans are accessible via nodetool commands
discussed throughout this book.

Database MBeans
These are the Cassandra classes related to the core database itself that are exposed to
clients in the org.apache.cassandra.db domain. There are many MBeans in this
domain, but we’ll focus on a few key ones related to the data the node is responsible
for storing, including caching, the commit log, and metadata about specific tables.

Storage Service MBean
Because Cassandra is a database, it’s essentially a very sophisticated storage program;
therefore, Cassandra’s storage engine as implemented in the org.apache.cassan
dra.service.StorageService is an essential focus of monitoring and management.
The corresponding MBean for this service is the StorageServiceMBean, which pro‐
vides many useful attributes and operations.

The MBean exposes identifying information about the node, including its host ID,
the cluster name, and partitioner in use. It also allows you to inspect the node’s Opera
tionMode, which reports normal if everything is going smoothly (other possible states

Cassandra’s MBeans | 247

are leaving, joining, decommissioned, and client). These attributes are used by
nodetool commands such as describecluster and info.

You can also view the current set of live nodes, as well as the set of unreachable nodes
in the cluster. If any nodes are unreachable, Cassandra will tell you their IP addresses
in the UnreachableNodes attribute.

To get an understanding of how much data is stored on each node, you can use the
getLoadMapWithPort() method, which will return a Java Map with keys of IP
addresses with values of their corresponding storage loads. You can also use the
effectiveOwnershipWithPort(String keyspace) operation to access the percent‐
age of the data in a keyspace owned by each node. This information is used in the
nodetool ring and status commands.

If you’re looking for which nodes own a certain partition key, you can use the getNa
turalEndpointsWithPort() operation. Pass it the keyspace name, table name, and
the partition key for which you want to find the endpoint value, and it will return a
list of IP addresses (with port number) that are responsible for storing this key.

You can also use the describeRingWithPortJMX() operation to get a list of token
ranges in the cluster, including their ownership by nodes in the cluster. This is used
by the nodetool describering operation.

There are many standard maintenance operations that the StorageServiceMBean
affords you, including resumeBootstrap(), joinRing(), flush(), truncate(),
repairAsync(), cleanup(), scrub(), drain(), removeNode(), decommission(), and
operations to start and stop gossip, and the native transport. We’ll dig into the node
tool commands that correspond to these operations in Chapter 12.

If you want to change Cassandra’s logging configuration at runtime without inter‐
rupting service (as you’ll see in “Logging” on page 266), you can invoke the getLog
gingLevels() method to see the currently configured levels, and then use the
setLoggingLevel(String classQualifier, String level) method to override the
log level for classes matching the pattern you provide.

Storage Proxy MBean

As you learned in Chapter 6, the org.apache.cassandra.service.StorageProxy
provides a layer on top of the StorageService to handle client requests and inter-
node communications. The StorageProxyMBean provides the ability to check and set
timeout values for various operations, including read and write. Along with many
other attributes exposed by Cassandra’s MBeans, these timeout values would origi‐
nally be specified in the cassandra.yaml file. Setting these attributes takes effect only
until the next time the node is restarted, whereupon they’ll be initialized to the values
in the configuration file.

248 | Chapter 11: Monitoring

This MBean also provides access to hinted handoff settings such as the maximum
time window for storing hints. Hinted handoff statistics include getTotalHints()
and getHintsInProgress(). You can disable hints for nodes in a particular data cen‐
ter with the disableHintsForDC() operation.

You can also turn this node’s participation in hinted handoff on or off via setHinted
HandoffEnabled(), or check the current status via getHintedHandoffEnabled().
These are used by nodetool’s enablehandoff, disablehandoff, and statushandoff
commands, respectively.

Hints Service MBean

In addition to the hinted handoff operations on the StorageServiceMBean, Cassan‐
dra provides more hinted handoff controls via the org.apache.cassan

dra.hints.HintsServiceMBean. The MBean exposes the ability to pause and resume
hint delivery. You can delete hints that are stored up for a specific node with dele
teAllHintsForEndpoint().

Additionally, you can pause and resume hint delivery to all nodes with pauseDis
patch() and resumeDispatch(). You can delete stored hints for all nodes with the
deleteAllHints() operation, or for a specific node with deleteAllHintsForEnd
point(). These are used by nodetool’s pausehandoff, resumehandoff, and truncate
hints commands.

Column Family Store MBean

Cassandra registers an instance of the org.apache.cassandra.db.ColumnFamilyStor
eMBean for each table stored in the node under org.apache.cassandra.db > Tables
(this is a legacy name: tables were known as column families in early versions of
Cassandra).

The ColumnFamilyStoreMBean provides access to the compaction and compression
settings for each table. This allows you to temporarily override these settings on a
specific node. The values will be reset to those configured on the table schema when
the node is restarted.

The MBean also exposes a lot of information about the node’s storage of data for this
table on disk. The getSSTableCountPerLevel() operation provides a list of how
many SStables are in each tier. The estimateKeys() operation provides an estimate
of the number of partitions stored on this node. Taken together, this information can
give you some insight as to whether invoking the forceMajorCompaction() opera‐
tion for this table might help free space on this node and increase read performance.

Cassandra’s MBeans | 249

There is also a trueSnapshotsSize() operation that allows you to determine the size
of SSTable shapshots that are no longer active. A large value here indicates that you
should consider deleting these snapshots, possibly after making an archive copy.

Because Cassandra stores indexes as tables, there is also a ColumnFamilyStoreMBean
instance for each indexed column, available under org.apache.cassandra.db >

IndexTables (previously IndexColumnFamilies), with the same attributes and
operations.

Commit Log MBean

The org.apache.cassandra.db.commitlog.CommitLogMBean exposes attributes and
operations that allow you to learn about the current state of commit logs. The Commi
tLogMBean also exposes the recover() operation, which can be used to restore data‐
base state from archived commit log files.

The default settings that control commit log recovery are specified in the conf/commi‐
tlog_archiving.properties file, but can be overridden via the MBean. You’ll learn more
about data recovery in Chapter 12.

Compaction Manager MBean

You’ve already taken a peek inside the source of the org.apache.cassandra.db.com
paction.CompactionManagerMBean to see how it interacts with JMX, but we didn’t
really talk about its purpose. This MBean allows you to get statistics about compac‐
tions performed in the past, and the ability to force compaction of specific SSTable
files we identify by calling the forceUserDefinedCompaction method of the Compac
tionManager class. This MBean is leveraged by nodetool commands, including com
pact, compactionhistory, and compactionstats.

Cache Service MBean

The org.apache.cassandra.service.CacheServiceMBean provides access to Cas‐
sandra’s key, row, chunk, and counter caches under the domain org.apache.cassan
dra.db > Caches. The information available for each cache includes the maximum
size and time duration to cache items, and the ability to invalidate each cache.

Cluster-Related MBeans
There are plenty of additional MBeans outside the core database engine that help
manage how a Cassandra node relates to other nodes in its cluster, including snitch‐
ing, gossip and failure detection, hinted handoff, messaging, and streaming.

250 | Chapter 11: Monitoring

Gossiper MBean

The org.apache.cassandra.gms.GossiperMBean provides access to the work of the
Gossiper.

We’ve already discussed how the StorageServiceMBean reports which nodes are
unreachable. Based on that list, you can call the getEndpointDowntime() operation
on the GossiperMBean to determine how long a given node has been down. The
downtime is measured from the perspective of the node whose MBean you’re inspect‐
ing, and the value resets when the node comes back online. Cassandra uses this oper‐
ation internally to know how long it can wait to discard hints.

The getCurrentGenerationNumber() operation returns the generation number asso‐
ciated with a specific node. The generation number is included in gossip messages
exchanged between nodes and is used to distinguish the current state of a node from
the state prior to a restart. The generation number remains the same while the node is
alive and is incremented each time the node restarts. It’s maintained by the Gossiper
using a timestamp.

The assassinateEndpoint() operation attempts to remove a node from the ring by
telling the other nodes that the node has been permanently removed, similar to the
concept of “character assassination” in human gossip. Assassinating a node is a main‐
tenance step of last resort when a node cannot be removed from the cluster normally.
This operation is used by the nodetool assassinate command.

Failure Detector MBean

The org.apache.cassandra.gms.FailureDetectorMBean provides attributes
describing the states and Phi scores of other nodes, as well as the Phi conviction
threshold.

Snitch MBeans
Cassandra provides two MBeans to monitor and configure behavior of the snitch.
The org.apache.cassandra.locator.EndpointSnitchInfoMBean provides the name
of the rack and data center for a given host, as well as the name of the snitch in use.

If you’re using the DynamicEndpointSnitch, the org.apache.cassandra.loca

tor.DynamicEndpointSnitchMBean is registered. This MBean exposes the ability to
reset the badness threshold used by the snitch to determine when to change its pre‐
ferred replica for a token range, as well as allowing you to see the scores for various
nodes.

Cassandra’s MBeans | 251

Stream Manager MBean

The org.apache.cassandra.streaming.StreamManagerMBean allows us to see the
SSTable streaming activities that occur between a node and its peers. There are two
basic ideas here: a stream source and a stream destination. Each node can stream its
data to another node in order to perform load balancing, and the StreamManager
class supports these operations. The StreamManagerMBean gives a necessary view into
the data that is moving between nodes in the cluster.

The StreamManagerMBean supports two modes of operation. The getCurrent
Streams() operation provides a snapshot of the current incoming and outgoing
streams, and the MBean also publishes notifications associated with stream state
changes, such as initialization, completion, or failure. You can subscribe to these noti‐
fications in your JMX client in order to watch the streaming operations as they occur.

So in conjunction with the StorageServiceMBean, if you’re concerned that a node is
not receiving data as it should, or that a node is unbalanced or even down, these two
MBeans working together can give you very rich insight into exactly what’s happen‐
ing in your cluster.

Messaging Service MBean

As you learned in Chapter 6, the org.apache.cassandra.net.MessagingService
manages messages to and from other nodes other than streaming. The MessagingSer
viceMBean exposes attributes that include data about pending and dropped messages,
as well as operations to manage backpressure.

Internal MBeans
The final MBeans we’ll consider describe internal operations of the Cassandra node,
including threading, garbage collection, security, and exposing metrics.

Thread Pool MBeans

Cassandra’s thread pools are implemented via the JMXEnabledThreadPoolExecutor
and JMXConfigurableThreadPoolExecutor classes in the org.apache.cassan

dra.concurrent package. The MBeans for each stage implement the JMXEnabled
ThreadPoolExecutorMBean and JMXConfigurableThreadPoolExecutorMBean

interfaces, respectively, which allow you to view and configure the number of core
threads in each thread pool as well as the maximum number of threads. The MBeans
for each type of thread pool appear under the org.apache.cassandra.internal
domain to JMX clients.

252 | Chapter 11: Monitoring

Garbage Collection MBeans
The JVM’s garbage collection processing can impact tail latencies if not tuned prop‐
erly, so it’s important to monitor its performance, as you’ll see in Chapter 13. The
GCInspectorMXBean appears in the org.apache.cassandra.service domain. It
exposes the operation getAndResetStats(), which retrieves and then resets garbage
collection metrics that Cassandra collects on its JVM, which is used by the nodetool
gcstats command. It also exposes attributes that control the thresholds at which
INFO and WARN logging messages are generated for long garbage collection pauses.

Security MBeans

The org.apache.cassandra.auth domain defines the AuthCacheMBean, which expo‐
ses operations used to configure how Cassandra caches client authentication records.
We’ll discuss this MBean in Chapter 14.

Metrics MBeans
The ability to access metrics related to application performance, health, and key activ‐
ities has become an essential tool for maintaining web-scale applications. Fortunately,
Cassandra collects a wide range of metrics on its own activities to help you under‐
stand the behavior. JMX supports several different styles of metrics, including coun‐
ters, gauges, meters, histograms, and timers.

To make its metrics accessible via JMX, Cassandra uses the Dropwizard Metrics open
source Java library. Cassandra uses the org.apache.cassandra.metrics.Cassandra
MetricsRegistry to register its metrics with the Dropwizard Metrics library, which
in turn exposes them as MBeans in the org.apache.cassandra.metrics domain.
You’ll see in “Metrics” on page 263 a summary of the specific metrics that Cassandra
reports and learn how these can be exposed to metrics aggregation frameworks.

Monitoring with nodetool
You’ve already explored a few of the commands offered by nodetool in previous
chapters, but let’s take this opportunity to get properly acquainted.

nodetool ships with Cassandra and can be found in <cassandra-home>/bin. This is a
command-line program that offers a rich array of ways to look at your cluster, under‐
stand its activity, and modify it. nodetool lets you get statistics about the cluster, see
the ranges each node maintains, move data from one node to another, decommission
a node, and even repair a node that’s having trouble.

Behind the scenes, nodetool uses JMX to access the MBeans described previously
using a helper class called org.apache.cassandra.tools.NodeProbe. The NodeProbe
class connects to the JMX agent at a specified node by its IP address and JMX port,

Monitoring with nodetool | 253

http://metrics.dropwizard.io
http://metrics.dropwizard.io

locates MBeans, retrieves their data, and invokes their operations. The NodeToolCmd
class in the same package is an abstract class that is extended by each nodetool com‐
mand to provide access to administrative functionality in an interactive command-
line interface.

nodetool uses the same environment settings as the Cassandra daemon: bin/cassan‐
dra.in.sh and conf/cassandra-env.sh on Unix (or bin/cassandra.in.bat and conf/
cassandra-env.ps1 on Windows). The logging settings are found in the conf/logback‐
tools.xml file; these work the same way as the Cassandra daemon logging settings
found in conf/logback.xml.

Starting nodetool is a breeze. Just open a terminal, navigate to <cassandra-home>,
and enter the following command:

$ bin/nodetool help

This causes the program to print a list of available commands, several of which we
will cover momentarily. Running nodetool with no arguments is equivalent to the
help command. You can also execute help with the name of a specific command to
get additional details.

Connecting to a Specific Node

With the exception of the help command, nodetool must connect
to a Cassandra node in order to access information about that node
or the cluster as a whole.
You can use the -h option to identify the IP address of the node to
connect to with nodetool. If no IP address is specified, the tool
attempts to connect to the default port on the local machine.
If you have a ccm cluster available, as discussed in Chapter 10, you
can run nodetool commands against specific nodes; for example:

ccm node1 nodetool help

To get more interesting statistics from a cluster as you try out the
commands in this chapter yourself, you might want to run your
own instance of the Reservation Service introduced in Chapter 7
and Chapter 8.

Getting Cluster Information
You can get a variety of information about the cluster and its nodes, which we look at
in this section. You can get basic information on an individual node or on all the
nodes participating in a ring.

254 | Chapter 11: Monitoring

describecluster

The describecluster command prints out basic information about the cluster,
including the name, snitch, and partitioner. For example, here’s a portion of the out‐
put when run against the cluster created for the Reservation Service using ccm:

$ ccm node1 nodetool describecluster

Cluster Information:
 Name: reservation_service
 Snitch: org.apache.cassandra.locator.SimpleSnitch
 DynamicEndPointSnitch: enabled
 Partitioner: org.apache.cassandra.dht.Murmur3Partitioner
 Schema versions:
 2b88dbfd-6e40-3ef1-af11-d88b6dff2c3b: [127.0.0.4, 127.0.0.3,
 127.0.0.2, 127.0.0.1]
...

We’ve shortened the output a bit for brevity. The Schema versions portion of the
output is especially important for identifying any disagreements in table definitions,
or schema, between nodes. While Cassandra propagates schema changes through a
cluster, any differences are typically resolved quickly, so any lingering schema differ‐
ences usually correspond to a node that is down or unreachable and needs to be
restarted, which you should be able to confirm via the summary statistics on nodes
that are also printed out.

status
A more direct way to identify the nodes in your cluster and what state they’re in, is to
use the status command:

$ ccm node1 nodetool status

Datacenter: datacenter1
=======================
Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
-- Address Load Tokens Owns (effective) Host ID Rack
UN 127.0.0.1 251.77 KiB 256 48.7% d23716cb... rack1
UN 127.0.0.2 250.28 KiB 256 50.0% 635f2ab7... rack1
UN 127.0.0.3 250.47 KiB 256 53.6% a1cd5663... rack1
UN 127.0.0.4 403.46 KiB 256 47.7% b493769e... rack1

The status is organized by data center and rack. Each node’s status is identified by a
two-character code: the first character indicates whether the node is up (currently
available and ready for queries) or down, and the second character indicates the state
or operational mode of the node. The load column represents the byte count of the
data each node is holding. The owns column indidates the effective percentage of the
token range owned by the node, taking replication into account.

Monitoring with nodetool | 255

info

The info command tells nodetool to connect with a single node and get basic data
about its current state. Just pass it the address of the node you want info for:

$ ccm node2 nodetool info

ID : 635f2ab7-e81a-423b-a566-674d8010c819
Gossip active : true
Native Transport active: true
Load : 250.28 KiB
Generation No : 1574894395
Uptime (seconds) : 146423
Heap Memory (MB) : 191.69 / 495.00
Off Heap Memory (MB) : 0.00
Data Center : datacenter1
Rack : rack1
Exceptions : 0
Key Cache : entries 10, size 896 bytes, capacity 24 MiB,
 32 hits, 44 requests, 0.727 recent hit rate,
 14400 save period in seconds
Row Cache : entries 0, size 0 bytes, capacity 0 bytes,
 0 hits, 0 requests, NaN recent hit rate,
 0 save period in seconds
Counter Cache : entries 0, size 0 bytes, capacity 12 MiB,
 0 hits, 0 requests, NaN recent hit rate,
 7200 save period in seconds
Chunk Cache : entries 16, size 256 KiB, capacity 91 MiB,
 772 misses, 841 requests, 0.082 recent hit rate,
 NaN microseconds miss latency
Percent Repaired : 100.0%
Token : (invoke with -T/--tokens to see all 256 tokens)

The information reported includes the memory and disk usage (Load) of the node
and the status of various services offered by Cassandra. You can also check the status
of individual services with the nodetool commands statusgossip, statusbinary,
and statushandoff (note that handoff status is not part of info).

ring

To determine what nodes are in your ring and what state they’re in, use the ring com‐
mand on nodetool, like this:

$ Datacenter: datacenter1
==========
Address Rack Status State Load Owns Token
 9218490134647118760
127.0.0.1 rack1 Up Normal 251.77 KiB 48.73% -9166983985142207552
127.0.0.4 rack1 Up Normal 403.46 KiB 47.68% -9159867377343852899
127.0.0.2 rack1 Up Normal 250.28 KiB 49.99% -9159653278489176223
127.0.0.1 rack1 Up Normal 251.77 KiB 48.73% -9159520114055706114
...

256 | Chapter 11: Monitoring

This output is organized in terms of virtual nodes (vnodes). Here you see the IP
addresses of all the nodes in the ring. In this case, there are three nodes, all of which
are up (currently available and ready for queries). The load column represents the
byte count of the data each node is holding. The output of the describering com‐
mand is similar but is organized around token ranges.

Other useful status commands provided by nodetool include:

• The getLoggingLevels and setLoggingLevels commands allow dynamic con‐
figuration of logging levels, using the Logback JMXConfiguratorMBean we dis‐
cussed previously.

• The gossipinfo command prints the information this node disseminates about
itself and has obtained from other nodes via gossip, while failuredetector pro‐
vides the Phi failure detection value calculated for other nodes.

• The version command prints the version of Cassandra this node is running.

Getting Statistics
nodetool also lets you gather statistics about the state of your server in the aggregate
level as well as down to the level of specific keyspaces and tables. Two of the most
frequently used commands are tpstats and tablestats, both of which we examine
now.

Using tpstats

The tpstats tool gives us information on the thread pools that Cassandra maintains.
Cassandra is highly concurrent, and optimized for multiprocessor/multicore
machines, so understanding the behavior and health of the thread pools is important
to good Cassandra maintenance.

To find statistics on the thread pools, execute nodetool with the tpstats command:

$ bin/nodetool tpstats
ccm node1 nodetool tpstats

Pool Name Active Pending Completed Blocked All time blocked
ReadStage 0 0 399 0 0
MiscStage 0 0 0 0 0
CompactionExecutor 0 0 95541 0 0
MutationStage 0 0 0 0 0
...

Message type Dropped Latency waiting in queue (micros)
 50% 95% 99% Max
READ_RSP 0 0.00 0.00 0.00 0.00
RANGE_REQ 0 0.00 0.00 0.00 0.00

Monitoring with nodetool | 257

PING_REQ 0 0.00 0.00 0.00 0.00
_SAMPLE 0 0.00 0.00 0.00 0.00

The top portion of the output presents data on tasks in each of Cassandra’s thread
pools. You can see directly how many operations are in what stage, and whether they
are active, pending, or completed. For example, by reviewing the number of active
tasks in the MutationStage, you can learn how many writes are in progress.

The bottom portion of the output indicates the number of dropped messages for the
node. Dropped messages are an indicator of Cassandra’s load shedding implementa‐
tion, which each node uses to defend itself when it receives more requests than it can
handle. For example, internode messages that are received by a node but not pro‐
cessed within the rpc_timeout are dropped, rather than processed, as the coordinator
node will no longer be waiting for a response.

Seeing lots of zeros in the output for blocked tasks and dropped messages means that
you either have very little activity on the server or that Cassandra is doing an excep‐
tional job of keeping up with the load. Lots of nonzero values are indicative of situa‐
tions where Cassandra is having a hard time keeping up, and may indicate a need for
some of the techniques described in Chapter 13.

Using tablestats

To see overview statistics for keyspaces and tables, you can use the tablestats com‐
mand. You may also recognize this command from its previous name, cfstats. Here
is sample output on the reservations_by_confirmation table:

$ ccm node1 nodetool tablestats reservation.reservations_by_confirmation

Total number of tables: 43

Keyspace : reservation
 Read Count: 0
 Read Latency: NaN ms
 Write Count: 0
 Write Latency: NaN ms
 Pending Flushes: 0
 Table: reservations_by_confirmation
 SSTable count: 0
 Old SSTable count: 0
 Space used (live): 0
 Space used (total): 0
 Space used by snapshots (total): 0
 Off heap memory used (total): 0
 SSTable Compression Ratio: -1.0
 Number of partitions (estimate): 0
 Memtable cell count: 0
 Memtable data size: 0
 Memtable off heap memory used: 0
 Memtable switch count: 0

258 | Chapter 11: Monitoring

 Local read count: 0
 Local read latency: NaN ms
 Local write count: 0
 Local write latency: NaN ms
 Pending flushes: 0
 Percent repaired: 100.0
 Bloom filter false positives: 0
 Bloom filter false ratio: 0.00000
 Bloom filter space used: 0
 Bloom filter off heap memory used: 0
 Index summary off heap memory used: 0
 Compression metadata off heap memory used: 0
 Compacted partition minimum bytes: 0
 Compacted partition maximum bytes: 0
 Compacted partition mean bytes: 0
 Average live cells per slice (last five minutes): NaN
 Maximum live cells per slice (last five minutes): 0
 Average tombstones per slice (last five minutes): NaN
 Maximum tombstones per slice (last five minutes): 0
 Dropped Mutations: 0

You can see the read and write latency, and total number of reads and writes. You can
also see detailed information about Cassandra’s internal structures for the table,
including memtables, Bloom filters, and SSTables. You can get statistics for all the
tables in a keyspace by specifying just the keyspace name, or specify no arguments to
get statistics for all tables in the cluster.

Virtual Tables
In the 4.0 release, Cassandra added a virtual tables feature. Virtual tables are so
named because they are not actual tables that are stored using Cassandra’s typical
write path, with data written to memtables and SSTables. Instead, these virtual tables
are views that provide metadata about nodes and tables via standard CQL.

This metadata is available via two keyspaces, which you may have noticed in earlier
chapters when you used the DESCRIBE KEYSPACES command, called system_views
and system_virtual_schema:

cqlsh> DESCRIBE KEYSPACES;

reservation system_traces system_auth system_distributed system_views
system_schema system system_virtual_schema

These two keyspaces contain virtual tables that provide different types of metadata.
Before we look into them, here are a couple of important things you should know
about virtual tables:

• You may not define your own virtual tables.
• The scope of virtual tables is the local node.

Virtual Tables | 259

• When interacting with virtual tables through cqlsh, results will come from the
node that cqlsh connected to, as you’ll see next.

• Virtual tables are not persisted, so any statistics will be reset when the node
restarts.

System Virtual Schema
Let’s look first at the tables in the system_virtual_schema:

cqlsh:system> USE system_virtual_schema;
cqlsh:system_virtual_schema> DESCRIBE TABLES;

keyspaces columns tables

If you examine the schema and contents of the keyspaces table, you’ll see that the
schema of this table is extremely simple—it’s just a list of keyspace names:

cqlsh:system_virtual_schema> SELECT * FROM KEYSPACES;

 keyspace_name

 reservation
 system_views
 system_virtual_schema

(3 rows)

The design of the tables table is quite similar, consisting of keyspace_name,
table_name, and comment columns, in which the primary key is (keyspace_name,
table_name).

The columns table is more interesting. We’ll focus on a subset of the available
columns:

cqlsh:system_virtual_schema> SELECT column_name, clustering_order, kind,
 position, type FROM columns WHERE keyspace_name = 'reservation' AND
 table_name = 'reservations_by_hotel_date';

 column_name | clustering_order | kind | position | type
----------------+------------------+---------------+----------+----------
 confirm_number | none | regular | -1 | text
 end_date | none | regular | -1 | date
 guest_id | none | regular | -1 | uuid
 hotel_id | none | partition_key | 0 | text
 room_number | asc | clustering | 0 | smallint
 start_date | none | partition_key | 1 | date

(6 rows)

260 | Chapter 11: Monitoring

As you can see, this query provides enough data to describe the schema of a table,
including the columns and primary key definition. Although it does not include the
table options, the response is otherwise quite similar in content to the output of the
cqlsh DESCRIBE operations.

Interestingly, cqlsh traditionally scanned tables in the system keyspace to implement
these operations, but is updated in the 4.0 release to use virtual tables.

System Views
The second keyspace containing virtual tables is the system_views keyspace. Let’s get
a list of the available views:

cqlsh:system_virtual_schema> SELECT * FROM tables WHERE
 keyspace_name = 'system_views';

 keyspace_name | table_name | comment
---------------+---------------------------+-----------------------------
 system_views | caches | system caches
 system_views | clients | currently connected clients
 system_views | coordinator_read_latency |
 system_views | coordinator_scan_latency |
 system_views | coordinator_write_latency |
 system_views | disk_usage |
 system_views | internode_inbound |
 system_views | internode_outbound |
 system_views | local_read_latency |
 system_views | local_scan_latency |
 system_views | local_write_latency |
 system_views | max_partition_size |
 system_views | rows_per_read |
 system_views | settings | current settings
 system_views | sstable_tasks | current sstable tasks
 system_views | thread_pools |
 system_views | tombstones_per_read |

(17 rows)

As you can see, there is a mix of tables that provide latency histograms for reads and
writes to local storage, and for when this node is acting as a coordinator.

The max_partition_size and tombstones_per_read tables are particularly useful in
helping to identify some of the situations that lead to poor performance in Cassandra
clusters, which we’ll address in Chapter 12.

The disk_usage view provides the storage expressed in mebibytes (1,048,576 bytes).
Again, remember this is how much storage there is for each table on that individual
node. Related to this is the max_partition_size, which can be useful in determining
if a node is affected by a wide partition. You’ll learn more about how to detect and
address these in Chapter 13.

Virtual Tables | 261

Let’s look a bit more closely at a couple of these tables. First, let’s have a look at a few
of the columns in the clients table:

cqlsh:system_virtual_schema> USE system_views;
cqlsh:system_views> SELECT address, port, hostname, request_count
 FROM clients;

 address | port | hostname | request_count
-----------+-------+-----------+--------------
 127.0.0.1 | 50631 | localhost | 261
 127.0.0.1 | 50632 | localhost | 281

As you can see, this table provides information about each client with an active con‐
nection to the node, including its location and number of requests. Other columns
not shown here provide information about the client’s identity and encryption set‐
tings, and the protocol version in use. This information is useful to make sure the list
of clients and their level of usage is in line with what you expect for your application.

Another useful table is settings. This allows you to see the values of configurable
parameters for the node set via the cassandra.yaml file or subsequently modified via
JMX:

cqlsh:system_views> SELECT * FROM settings LIMIT 10;

 name | value
--+----------------------
 allocate_tokens_for_keyspace | null
 allocate_tokens_for_local_replication_factor | null
 audit_logging_options_audit_logs_dir | /var/logs/audit/
 audit_logging_options_enabled | false
 audit_logging_options_excluded_categories |
 audit_logging_options_excluded_keyspaces | system,system_schema,
 | system_virtual_schema
 audit_logging_options_excluded_users |
 audit_logging_options_included_categories |
 audit_logging_options_included_keyspaces |
 audit_logging_options_included_users |

(10 rows)

You’ll notice that much of this same information could be accessed via various node
tool commands. However, the value of virtual tables is that they may be accessed
through any client using the CQL native protocol, including applications you write
using the DataStax Java Drivers. Of course, some of these values you may not wish to
allow your clients access to; we’ll discuss how to secure access to keyspaces and tables
in Chapter 14.

If you’re interested in the implementation of virtual tables, you can find the code in
the org.apache.cassandra.db.virtual package. For more detail on using virtual

262 | Chapter 11: Monitoring

tables, see Alexander Dejanovski’s blog post, “Virtual tables are coming in Cassandra
4.0”.

More Virtual Table Functionality

While the 4.0 release provides a very useful set of virtual tables, the
Cassandra community has proposed several additional virtual
tables that may be added in future releases, which you can find in
the Cassandra Jira:

CASSANDRA-15254
Set the configuration values on the settings table

CASSANDRA-14795
Hints metadata

CASSANDRA-14572
Additional table metrics

CASSANDRA-12367
Access to individual partition sizes

CASSANDRA-15241
Get a listing of current running queries

CASSANDRA-15399
Repair status

We expect that the data available via virtual tables will eventually
catch up with JMX, and even surpass it in some areas.

Metrics
As we mentioned at the start of this chapter, metrics are a vital component of the
observability of the system. It’s important to have access to metrics at the OS, JVM,
and application level. The metrics Cassandra reports at the application level include:

• Buffer pool metrics describing Cassandra’s use of memory
• CQL metrics, including the number of prepared and regular statement executions
• Cache metrics for key, row, and counter caches, such as the number of entries ver‐

sus capacity, as well as hit and miss rates
• Client metrics, including the number of connected clients, and information about

client requests such as latency, failures, and timeouts
• Commit log metrics, including the commit log size and statistics on pending and

completed tasks

Metrics | 263

https://oreil.ly/HxxDr
https://oreil.ly/HxxDr
https://oreil.ly/B8jFo
https://oreil.ly/DP0jX
https://oreil.ly/dCIIg
https://oreil.ly/PJdFD
https://oreil.ly/XRw22
https://oreil.ly/V9cFR

• Compaction metrics, including the total bytes compacted and statistics on pend‐
ing and completed compactions

• Connection metrics to each node in the cluster, including gossip
• Dropped message metrics that are used as part of nodetool tpstats
• Read repair metrics describing the number of background versus blocking read

repairs performed over time
• Storage metrics, including counts of hints in progress and total hints
• Streaming metrics, including the total incoming and outgoing bytes of data

streamed to other nodes in the cluster
• Thread pool metrics, including active, completed, and blocked tasks for each

thread pool
• Table metrics, including caches, memtables, SSTables, and Bloom filter usage, and

the latency of various read and write operations, reported at 1-, 5-, and 15-
minute intervals

• Keyspace metrics that aggregate the metrics for the tables in each keyspace

Many of these metrics are used by nodetool commands such as tpstats, tablehisto
grams, and proxyhistograms. For example, tpstats is simply a presentation of the
thread pool and dropped message metrics.

Resetting Metrics

Note that in Cassandra releases through 4.0, the metrics reported
are lifetime metrics since the node was started. To reset the metrics
on a node, you have to restart it. The Jira issue CASSANDRA-8433
requests the ability to reset the metrics via JMX and nodetool.

Metrics Aggregation
You’ve read how Cassandra exposes metrics via JMX and Dropwizard, and how to
view some of these metrics via tools, including nodetool and cqlsh (via virtual
tables). These tools are a great help for looking at the state of one node at a time. Cas‐
sandra’s metrics can also fit into a broader observability strategy for your applications.

If you’ve had experience building cloud applications, you may be familiar with met‐
rics aggregation frameworks such as Prometheus and metrics visualization tools such
as Grafana. There’s a simple integration available on GitHub that you can use to
aggregate Cassandra and operating system metrics from across your cluster. This
repository provides configuration files for running Prometheus and Grafana in
Docker, and instructions for how to install agents that will expose metrics from your

264 | Chapter 11: Monitoring

https://oreil.ly/p1quJ
https://oreil.ly/ogqEi

nodes to Prometheus. There are four built-in Grafana dashboards that provide useful
sets of metrics to observe:

C* Cluster Overview
This dashboard provides a top-level summary of the health of your cluster, high‐
lighting cluster size, total data stored, node compute data in terms of CPU, mem‐
ory, disk, and network, and Cassandra statistics.

C* Cluster Metrics
This dashboard provides a deeper look into Cassandra-specific metrics, includ‐
ing read and write load and latencies, and information about active, pending, and
blocked tasks per node, as shown in Figure 11-2.

C* Table Metrics
This dashboard allows you to slice read and write metrics by keyspace and table
to get a more fine-grained view.

System Metrics
This dashboard provides a deeper look into the compute metrics of nodes as col‐
lected from the host operating system.

Figure 11-2. Cassandra metrics dashboard in Grafana

Metrics | 265

These dashboards enable you to assess the overall health of Cassandra clusters and get
early indication of potential issues. Another powerful technique is to create dash‐
boards that combine Cassandra cluster and application-level metrics such as those
made available via the DataStax drivers, as you learned in Chapter 8. This will give
you a deeper understanding of how Cassandra and your application code interact to
affect the overall performance and health of your system.

Logging
While you can learn a lot about the overall health of your cluster from metrics, log‐
ging provides a way to get more specific detail about what’s happening in your data‐
base so that you can investigate and troubleshoot specific issues. Cassandra uses the
Simple Logging Facade for Java (SLF4J) API for logging, with Logback as the imple‐
mentation. SLF4J provides a facade over various logging frameworks such as Log‐
back, Log4j, and Java’s built-in logger (java.util.logging).

You can learn more about Logback here. Cassandra’s default logging configuration is
found in the file <cassandra-home>/conf/logback.xml.

The SLF4J API is built around the concepts of loggers and appenders. Each class in a
Java application has a dedicated logger, plus there are loggers for each level of the
package hierarchy, as well as a root logger. This allows fine-grained control over log‐
ging; you can configure the log level for a particular class or any level in the package
hierarchy, or even the root level.

The API uses a progression of log levels: ALL < DEBUG < INFO < WARN < ERROR <
FATAL < OFF. When you configure a log level for a logger, messages at that log level
and greater will be output via appenders (which we’ll introduce later in this section).
You can see how the logging level for Cassandra’s classes is set in the logback.xml file:

 <logger name="org.apache.cassandra" level="DEBUG"/>

Note that the root logger defaults to the INFO logging level, so that is the level at
which all other classes will report.

An appender is responsible for taking generated log messages that match a provided
filter and outputting them to some location. According to the default configuration
found in logback.xml, Cassandra provides appenders for logging into three different
files:

266 | Chapter 11: Monitoring

http://logback.qos.ch/

system.log
Contains logging messages at the INFO logging level and greater. You’ve already
seen some of the contents of the system.log in Chapter 10 as you were starting
and stopping a node, so you know that this log will contain information about
nodes joining and leaving a cluster. It also contains information about schema
changes.

debug.log
Contains more detailed messages useful for debugging, incorporating the DEBUG
log level and above. This log can be pretty noisy but provides a lot of useful infor‐
mation about internal activity within a node, including memtable flushing and
compaction.

gc.log
Contains messages related to the JVM’s garbage collection. This is a standard Java
garbage collection log file and is particularly useful for identifying long garbage
collection pauses. We’ll discuss garbage collection tuning in Chapter 13.

The default configuration also describes an appender for the console log, which you
can access in the terminal window where you start Cassandra by setting the -f flag
(to keep output visible in the foreground of the terminal window).

By default, Cassandra’s log files are stored in the logs directory under the Cassandra
installation directory. If you want to change the location of the logs directory, you can
override this value using the CASSANDRA_LOG_DIR environment variable when starting
Cassandra, or you can edit the logback.xml file directly.

The default configuration does not pick up changes to the logging settings on a live
node. You can ask Logback to rescan the configuration file once a minute, by setting
properties in the logback.xml file:

<configuration scan="true" scanPeriod="60 seconds">

You may also view the log levels on a running node through the nodetool getloggin
glevels command, and override the log level for the logger at any level of the Java
package and class hierarchy using nodetool setlogginglevel.

Other settings in the logback.xml file support rolling log files. By default, the logs are
configured to use the SizeAndTimeBasedRollingPolicy. Each log file will be rolled to
an archive once it reaches a size of 50 MB or at midnight, whichever comes first, with
a maximum of 5 GB across all system logs. For example, look at the configuration of
the rolling policy for the system.log:

<rollingPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedRollingPolicy">
 <fileNamePattern>
 ${cassandra.logdir}/system.log.%d{yyyy-MM-dd}.%i.zip
 </fileNamePattern>

Logging | 267

 <maxFileSize>50MB</maxFileSize>
 <maxHistory>7</maxHistory>
 <totalSizeCap>5GB</totalSizeCap>
</rollingPolicy>

Each log file archive is compressed in zip format and named according to the pattern
we’ve described, which will lead to files named system.log.2020-05-30.0.zip, system.log.
2020-05-30.1.zip, and so on. These archived log files are kept for seven days by
default. The default settings may well be suitable for development and production
environments; just make sure you account for the storage that will be required in
your planning.

Examining Log Files
You can examine log files in order to determine things that are happening with your
nodes. One of the most important tasks in monitoring Cassandra is to regularly check
log files for statements at the WARN and ERROR log levels. Several of the conditions
under which Cassandra generates WARN log messages are configurable via the cassan‐
dra.yaml file:

• The tombstone_warn_threshold property sets the maximum number of tomb‐
stones that Cassandra will encounter on a read before generating a warning. This
value defaults to 1,000.

• The batch_size_warn_threshold_in_kb property sets the maximum size of the
total data in a batch command, which is useful for detecting clients that might be
trying to insert a quantity of data in a batch that will negatively impact the coor‐
dinator node performance. The default value is 5 kb.

• The gc_warn_threshold_in_ms property sets the maximum garbage collection
pause that will cause a warning log. This defaults to 1,000 ms (1 second), and the
corresponding setting for INFO log messages gc_log_threshold_in_ms is set at
200 ms.

Here’s an example of a message you might find in the logs for a query that encounters
a large number of tombstones:

WARN [main] 2020-04-08 14:30:45,111 ReadCommand.java:598 -
 Read 0 live rows and 3291 tombstone cells for query
 SELECT * FROM reservation.reservations_by_hotel_date
 (see tombstone_warn_threshold)

268 | Chapter 11: Monitoring

Log Aggregation and Distributed Tracing

As with the use of metrics aggregation, it’s also frequently helpful to
aggregate logs across multiple microservices and infrastructure
components in order to analyze threads of related activity correla‐
ted by time. There are many commercial log aggregation solutions
available, and the ELK stack consisting of Elasticsearch, Logstash,
and Kibana is a popular combination of open source projects used
for log aggregation and analysis.
An additional step beyond basic aggregation is the ability to per‐
form distributed traces of calls throughout a system. This involves
incorporating a correlation ID into metadata passed on remote
calls or messages between services. The correlation ID is a unique
identifier, typically assigned by a service at the entry point into the
system. The correlation ID can be used as a search criteria through
aggregated logs to identify work performed across a system associ‐
ated with a particular request. You’ll learn more about tracing with
Cassandra in Chapter 13.

You can also observe the regular operation of the cluster through the log files. For
example, you could connect to a node in a cluster started using ccm, as described in
Chapter 10, and write a simple value to the database using cqlsh:

$ ccm node2 cqlsh
cqlsh> INSERT INTO reservation.reservations_by_confirmation
 (confirm_number, hotel_id, start_date, end_date, room_number,
 guest_id) VALUES ('RS2G0Z', 'NY456', '2020-06-08', '2020-06-10',
 111, 1b4d86f4-ccff-4256-a63d-45c905df2677);

If you execute this command, cqlsh will use node2 as the coordinator, so you can
check the logs for node2:

$ tail ~/.ccm/reservation_service/node2/logs/system.log
INFO [Messaging-EventLoop-3-5] 2019-12-07 16:00:45,542
 OutboundConnection.java:1135 - 127.0.0.2:7000(127.0.0.3:7000)->
 127.0.0.3:7000(127.0.0.3:62706)-SMALL_MESSAGES-627a8d80 successfully
 connected, version = 12, framing = CRC, encryption = disabled
INFO [Messaging-EventLoop-3-10] 2019-12-07 16:00:45,545
 OutboundConnection.java:1135 - 127.0.0.2:7000(127.0.0.4:7000)->
 127.0.0.4:7000(127.0.0.4:62707)-SMALL_MESSAGES-5bc34c55 successfully
 connected, version = 12, framing = CRC, encryption = disabled
INFO [Messaging-EventLoop-3-8] 2019-12-07 16:00:45,593
 InboundConnectionInitiator.java:450 - 127.0.0.1:7000(127.0.0.2:62710)->
 127.0.0.2:7000-SMALL_MESSAGES-9e9a00e9 connection established,
 version = 12, framing = CRC, encryption = disabled
INFO [Messaging-EventLoop-3-7] 2019-12-07 16:00:45,593
 InboundConnectionInitiator.java:450 - 127.0.0.3:7000(127.0.0.2:62709)->
 127.0.0.2:7000-SMALL_MESSAGES-e037c87e connection established,
 version = 12, framing = CRC, encryption = disabled

Logging | 269

This output shows connections initiated from node2 to the other nodes in the cluster
to write replicas, and the corresponding responses. If you examine the debug.log,
you’ll see similar information, but not the details of the specific query that was
executed.

Full Query Logging
If you want more detail on exact CQL query strings that are used by client applica‐
tions, use the full query logging feature introduced in Cassandra 4.0. The full query
log is a binary log designed to be extremely fast and add the minimum possible over‐
head to your queries. Full query logging is also useful for live traffic capture and
replay.

To enable full query logging on a node, create a directory to hold the logs and then set
the full_query_logging_options in the cassandra.yaml file to point to the directory:

full_query_logging_options:
 log_dir: /var/tmp/fql_logs

Other configuration options allow you to control how often the log is rolled over to a
new file (hourly by default), specify a command used to archive the log files, and set a
limit for full query logs. The full query log will not be enabled until you run the node
tool enablefullquerylog command.

Cassandra provides a tool to read the logs under the tools/bin/fqltool directory. Here’s
an example of what the output looks like after running some simple queries:

$ tools/bin/fqltool dump /var/tmp/fql_logs
Type: single-query
Query start time: 1575842591188
Protocol version: 4
Generated timestamp:-9223372036854775808
Generated nowInSeconds:1575842591
Query: INSERT INTO reservation.reservations_by_confirmation
 (confirm_number, hotel_id, start_date, end_date, room_number,
 guest_id) VALUES ('RS2G0Z', 'NY456', '2020-06-08', '2020-06-10', 111,
 1b4d86f4-ccff-4256-a63d-45c905df2677);
Values:

Type: single-query
Query start time: 1575842597849
Protocol version: 4
Generated timestamp:-9223372036854775808
Generated nowInSeconds:1575842597
Query: SELECT * FROM reservation.reservations_by_confirmation ;
Values:

Once you’re done collecting full query logs, run the nodetool disablefullquerylog
command.

270 | Chapter 11: Monitoring

Summary
In this chapter, you learned ways you can monitor and manage your Cassandra clus‐
ter. In particular, you learned the rich variety of operations Cassandra makes available
via JMX to the MBean server. You also learned how to use nodetool, virtual tables,
metrics, and logs to view what’s happening in your Cassandra cluster. You are now
ready to learn how to perform routine maintenance tasks to help keep your Cassan‐
dra cluster healthy.

Summary | 271

CHAPTER 12

Maintenance

In this chapter, we look at some things you can do to keep your Cassandra cluster
healthy. Our goal here is to provide an overview of the various maintenance tasks
available. Because the specific procedures for these tasks tend to change slightly from
release to release, you’ll want to make sure to consult the Cassandra documentation
for the release you’re using to make sure you’re not missing any new steps.

Let’s put our operations hats on and get started!

Health Check
There are some basic things that you’ll want to look for to ensure that nodes in your
cluster are healthy:

• Use nodetool status to make sure all of the nodes are up and reporting normal
status. Check the load column for each node to make sure the cluster is well bal‐
anced. An uneven number of nodes per rack can lead to an imbalanced cluster.

• Check nodetool tpstats on your nodes for dropped messages, especially muta‐
tions, as this indicates that data writes may be lost. A growing number of blocked
flush writers indicates the node is ingesting data into memory faster than it can
be flushed to disk. Both of these conditions can indicate that Cassandra is having
trouble keeping up with the load. As is usual with databases, once these problems
begin, they tend to continue in a downward spiral. Three things that can improve
the situation are a decreased load, scaling up (adding more hardware), or scaling
out (adding another node and rebalancing).

If these checks indicate issues, you may need to dig deeper to get more information
about what is going on:

273

https://oreil.ly/EpZyq

• Check the logs to see that nothing is reporting at ERROR or WARN level (e.g., an
OutOfMemoryError). Cassandra generates warning logs when it detects bad or
obsolete configuration settings, operations that did not complete successfully,
and memory or data storage issues.

• Review the configuration of the cassandra.yaml and cassandra-env.sh files for
your Cassandra nodes to make sure that they match your intended settings, espe‐
cially those for JVM and network configuration.

• Verify keyspace settings to make sure they match the topology of your cluster,
and the table configuration to make sure each table reflects your intended com‐
paction strategy and other settings. For example, a frequent configuration error is
to forget to update keyspace replication strategies when adding a new data center.

• Beyond the health of your Cassandra nodes, it is always helpful to have a sense of
the overall health and configuration of your system, including ensuring network
connectivity and that Network Time Protocol (NTP) servers are functioning
correctly.

These are a few of the most important things that experienced Cassandra operators
have learned to look for, and the Cassandra documentation on locating unhealthy
nodes may also be helpful. As you gain experience with your own deployments, you
can augment these with additional health checks that are appropriate for your own
environment.

Common Maintenance Tasks
There are a few basic tasks that you’ll need to perform as part of sequences involving
other more impactful tasks. For example, it makes sense to take a snapshot only after
you’ve performed a flush. We’ll introduce a few such tasks in this section so we can
reference them in the rest of the chapter.

Many of the tasks we look at in this chapter work somewhat differently depending on
whether you’re using virtual nodes (vnodes) or single-token nodes. Because vnodes
are the default, we’ll focus primarily on maintenance of those nodes, but provide
pointers if you’re using single-token nodes.

Flush
To force Cassandra to write data from its memtables to SSTables on the filesystem,
you use the nodetool flush command:

$ nodetool flush

If you check the debug.log file, you’ll see a series of output statements similar to this,
one per table stored on the node:

274 | Chapter 12: Maintenance

https://oreil.ly/roQi4

DEBUG [RMI TCP Connection(2)-127.0.0.1] 2019-12-09 17:43:19,958
 StorageService.java:3751 - Forcing flush on keyspace reservation,
 CF reservations_by_confirmation

You can selectively flush specific keyspaces or even specific tables within a keyspace
by naming them on the command line:

$ nodetool flush reservation
$ nodetool flush reservation reservations_by_hotel_date

Running flush also allows Cassandra to clear commitlog segments, as the data has
been written to SSTables.

The nodetool drain command is similar to flush. This command actually performs
a flush and then directs Cassandra to stop listening to commands from the client and
other nodes. The drain command is typically used as part of an orderly shutdown of
a Cassandra node and helps the node startup to run more quickly, as there is no com‐
mitlog to replay.

Cleanup
The nodetool cleanup command is a special case of compaction. It scans all of the
data on a node and discards any data that is no longer owned by the node. You might
ask why a node would have any data that it doesn’t own.

Say that you’ve had a cluster running for some time, and you want to change the rep‐
lication factor or the replication strategy. If you decrease the number of replicas for
any data center, then there will be nodes in that data center that no longer serve as
replicas for secondary ranges.

Or perhaps you’ve added a node to a cluster and reduced the size of the token
range(s) owned by each node. Then each node may contain data from portions of
token ranges it no longer owns.

In both of these cases, Cassandra does not immediately delete the excess data, in case
a node goes down while you’re in the middle of your maintenance. Instead, the nor‐
mal compaction processes will eventually discard this data.

However, you may wish to reclaim the disk space used by this excess data more
quickly to reduce the strain on your cluster. To do this, you can use the nodetool
cleanup command. To complete as quickly as possible, you can allocate all compac‐
tion threads to the cleanup by adding the -j 0 option. As with the flush command,
you can select to clean up specific keyspaces and tables.

Common Maintenance Tasks | 275

Repair
As you learned in Chapter 6, Cassandra’s tuneable consistency means that it is possi‐
ble for nodes in a cluster to get out of sync over time. For example, writes at consis‐
tency levels less than ALL may succeed even if some of the nodes don’t respond,
especially when a cluster is under heavy load. It’s also possible for a node to miss
mutations if it is down or unreachable for longer than the time window for which
hints are stored. The result is that different replicas for a different partition may have
different versions of your data.

This is especially challenging when the missed mutations are deletions. A node that is
down when the deletion occurs and remains offline for longer than the gc_grace_sec
onds defined for the table in question can “resurrect” the data when it is brought back
online.

Fortunately, Cassandra provides multiple anti-entropy mechanisms to help mitigate
against inconsistency. You’ve already learned how read repair and higher consistency
levels on reads can be used to increase consistency. The final key element of Cassan‐
dra’s arsenal is the anti-entropy repair or manual repair, which you perform using the
nodetool repair command.

You can execute a basic repair as follows:

$ nodetool repair
[2019-12-09 17:53:01,741] Starting repair command #1 (6aa75460-...
...
[2019-12-09 17:53:06,213] Repair completed successfully
[2019-12-09 17:53:06,219] Repair command #1 finished in 4 seconds
[2019-12-09 17:53:06,231] Replication factor is 1. No repair is needed...
[2019-12-09 17:53:06,240] Starting repair command #2 (6d56bcf0-...
...

You’ll be able to see additional logging statements in the debug log referencing the
same repair session identifiers. The output of these logs will vary, of course, based on
the current state of your cluster. This particular command iterates over all of the key‐
spaces and tables in the cluster, repairing each one. You can also specify specific key‐
spaces and even one or more specific tables to repair via the syntax: nodetool repair
<keyspace> {<table(s)>}; for example, nodetool repair reservation reserva
tions_by_hotel_date.

Limiting Repair Scope

The repair command can be restricted to run in the local data cen‐
ter via the -local option (which you may also specify via the
longer form --in-local-dc), or in a named data center via the -dc
<name> option (or --in-dc <name>).

276 | Chapter 12: Maintenance

Let’s look at what is happening behind the scenes when you run nodetool repair on
a node. The node on which the command is run serves as the coordinator node for
the request. The org.apache.cassandra.service.ActiveRepairService class is
responsible for managing repairs on the coordinator node and processes the incom‐
ing request. The ActiveRepairService first executes a read-only version of a major
compaction, also known as a validation compaction. During a validation compaction,
the node examines its local data store and creates Merkle trees containing hash values
representing the data in one of the tables under repair. This part of the process is gen‐
erally expensive in terms of disk I/O and memory usage.

Next, the node initiates a TreeRequest/TreeResponse conversation to exchange Mer‐
kle trees with neighboring nodes. If the trees from the different nodes don’t match,
they have to be reconciled in order to determine the latest data values they should all
be set to. If any differences are found, the nodes stream data to each other for the
ranges that don’t agree. When a node receives data for repair, it stores it in new
SSTables.

Note that if you have a lot of data in a table, the resolution of Merkle trees (see
“What’s a Merkle Tree?” on page 120) will not go down to the individual partition.
For example, in a node with a million partitions, each leaf node of the Merkle tree will
represent about 30 partitions. Each of these partitions will have to be streamed
together even if only a single partition requires repair. This behavior is known as
overstreaming. For this reason, the streaming part of the process is generally expen‐
sive in terms of network I/O, and can result in duplicate storage of data that did not
actually need repair.

This process is repeated on each node, for each included keyspace and table, until all
of the token ranges in the cluster have been repaired.

Although repair can be an expensive operation, Cassandra provides several options to
give you flexibility in how the work is spread out.

Full repair, incremental repair, and anti-compaction
In Cassandra releases prior to 2.1, performing a repair meant that all SSTables in a
node were examined; this is now referred to as a full repair. The 2.1 release intro‐
duced incremental repair. With incremental repairs, data that has been repaired is
separated from data that has not been repaired, a process known as anti-compaction.

This incremental approach improves the performance of the repair process, since
there are fewer SSTables to search on each repair. Also, the reduced search means that
fewer partitions are in scope, leading to smaller Merkle trees and less overstreaming.

Common Maintenance Tasks | 277

Incremental Repair Improvements

Alex Dejanovski’s excellent blog post, “Incremental Repair
Improvements in Cassandra 4”, explains the causes of overstream‐
ing in some detail, including why the process of anti-compaction
was not enough by itself to handle these issues in earlier releases,
and how incremental repairs have been improved in the 4.0 release
to be more reliable and efficient.

Cassandra adds a bit of metadata to each SSTable file in order to keep track of its
repair status. You can view the repair time by using the sstablemetadata tool. For
example, examining an SSTable for your reservation data indicates the data it con‐
tains has not been repaired:

$ tools/bin/sstablemetadata data/data/reservation/reservations_by_confirmation-
 ae8e00601a0211ea82980de3aa109b1d/na-1-big-Data.db
SSTable: data/data/reservation/reservations_by_confirmation-
 ae8e00601a0211ea82980de3aa109b1d/na-1-big
Partitioner: org.apache.cassandra.dht.Murmur3Partitioner
Bloom Filter FP chance: 0.01
...
SSTable Level: 0
Repaired at: 1575939181899 (12/09/2019 17:53:01)
Pending repair: --
...

Transitioning to Incremental Repair

Incremental repair became the default in the 2.2 release, and you
must use the -full option to request a full repair. If you are using a
version of Cassandra prior to 2.2, make sure to consult the release
documentation for any additional steps to prepare your cluster for
incremental repair.

Sequential and parallel repair
A sequential repair works on repairing one node at a time, while parallel repair works
on repairing multiple nodes with the same data simultaneously. Sequential repair was
the default for releases through 2.1, and parallel repair became the default in the 2.2
release.

When a sequential repair is initiated using the -seq option, a snapshot of data is
taken on the coordinator node and each replica node, and the snapshots are used to
construct Merkle trees. The repairs are performed between the coordinator node and
each replica in sequence. During sequential repairs, Cassandra’s dynamic snitch helps
maintain performance. Because replicas that aren’t actively involved in the current

278 | Chapter 12: Maintenance

https://oreil.ly/4JxtR
https://oreil.ly/4JxtR

repair are able to respond more quickly to requests, the dynamic snitch will tend to
route requests to these nodes.

A parallel repair is initiated using the -par option. In a parallel repair, all replicas are
involved in repair simultaneously, and no snapshots are needed. Parallel repair places
a more intensive load on the cluster than sequential repair, but also allows the repair
to complete more quickly.

Partitioner range repair
When you run repair on a node, by default Cassandra repairs all of the token ranges
for which the node is a replica. This is appropriate for the situation where you have a
single node that is in need of repair—for example, a node that has been down and is
being prepared to bring back online.

However, if you are doing regular repairs for preventative maintenance, as recom‐
mended, repairing all of the token ranges for each node means that you will be doing
multiple repairs over each range. For this reason, the nodetool repair command
provides the -pr option, which allows you to repair only the primary token range or
partitioner range. If you repair each node’s primary range, the whole ring will be
repaired.

Subrange repair

Even with the -pr option, a repair can still be an expensive operation, as the primary
range of a node can represent a large amount of data. For this reason, Cassandra sup‐
ports the ability to repair by breaking the token range of a node into smaller chunks,
a process known as subrange repair.

Subrange repair also addresses the issue of overstreaming. Because the full resolution
of a Merkle tree is applied to a smaller range, Cassandra can precisely identify indi‐
vidual rows that need repair.

To initiate a subrange repair operation, you will need the start token (-st) and end
token (-et) of the range to be repaired:

$ nodetool repair -st <start token> -et <end token>

You can obtain the assigned token ranges for your cluster using the nodetool ring
command. You can also obtain your cluster’s token ranges programmatically via the
DataStax Cassandra drivers. For example, the Java driver provides operations to get
the token ranges for a given host and keyspace, and to split a token range into sub‐
ranges. You could use these operations to automate a repair request for each sub‐
range, or just print out the ranges, as shown in this example:

for (TokenRange tokenRange :
 cqlSession.getMetadata().getTokenRanges())
{

Common Maintenance Tasks | 279

 for (TokenRange splitRange : tokenRange.splitEvenly(SPLIT_SIZE))
 {
 System.out.println("Start: " + splitRange.getStart().toString() +
 ", End: " + splitRange.getEnd().toString());
 }
}

However, it’s much more common to use one of the available tools, such as Reaper or
the OpsCenter Repair Service, rather than attempting to implement your own sub‐
range repair scheme.

Reaper: A Tool for Repairs
Cassandra Reaper, an automated repair tool created by Spotify, has a web-based user
interface added by The Last Pickle. Reaper orchestrates repairs across one or more
clusters, and lets you pause, resume, or cancel repairs and track repair status. It uses a
subrange repair approach as well as a backpressure mechanism to optimize repair
performance. It uses a pluggable storage approach for its own record keeping, allow‐
ing you to store state in memory, the Java-based H2 database, Postgres, or Cassandra.

Best practices for repair
In practice, selecting and executing the proper repair strategy is one of the more diffi‐
cult tasks in maintaining a Cassandra cluster. Here’s a checklist to help guide your
decision making:

Repair frequency
Remember that the data consistency your applications will observe depends on
the read and write consistency levels you use, the gc_grace_seconds defined for
each table, and the repair strategy you put in place. If you’re willing to use read/
write consistency levels that don’t guarantee immediate consistency, you’ll want
to do more frequent repairs.

Repair scheduling
Minimize the impact of repairs on your application by scheduling them at off-
peak times for your application. Alternatively, spread the process out by using
subrange repairs, or stagger repairs for various keyspaces and tables at different
start times. Even better, use one of the tools mentioned previously to schedule
your repairs.

Operations requiring repair
Don’t forget that some operations will require a full repair, such as changing the
snitch on a cluster, changing the replication factor on a keyspace, or recovering a
node that has been down.

280 | Chapter 12: Maintenance

http://cassandra-reaper.io

Avoiding conflicting repairs
Cassandra does not allow multiple simultaneous repairs over a given token
range, as repair by definition involves interactions between nodes. For this rea‐
son, it’s best to manage repairs from a single location external to the cluster,
rather than trying to implement automated processes on each node to repair
their locally owned ranges.

Tracking Repair Status

Until a more robust repair status mechanism is put in place (for
example, see the JIRA issue CASSANDRA-10302), you can moni‐
tor repairs in progress using nodetool netstats.

Rebuilding Indexes
If you’re using secondary indexes, they can get out of sync just like any other data.
While it is true that Cassandra stores secondary indexes as tables behind the scenes,
the index tables only reference values stored on the local node. For this reason, Cas‐
sandra’s repair mechanisms aren’t helpful for keeping indexes up to date.

Because secondary indexes can’t be repaired and there is no simple way to check their
validity, Cassandra provides the ability to rebuild them from scratch using nodetool’s
rebuild_index command. It is a good idea to rebuild an index after repairing the
table on which it is based, as the columns on which the index is based could have
been represented among the values repaired. As with repair, remember that rebuild‐
ing indexes is a CPU- and I/O-intensive procedure.

Moving Tokens
If you have configured your cluster to use vnodes (which has been the default config‐
uration since the 2.0. release), Cassandra handles the assignment of token ranges to
each of the nodes in your cluster. This includes changing these assignments when
nodes are added or removed from the cluster. However, if you’re using single-token
nodes, you’ll need to reconfigure the tokens manually.

To do this, you first need to recalculate the token ranges for each node using the tech‐
nique described in Chapter 10. Then you use the nodetool move command to assign
the ranges. The move command takes a single argument, which is the new start token
for the node:

$ nodetool move 3074457345618258600

After adjusting the token of each node, complete the process by running nodetool
cleanup on each node.

Common Maintenance Tasks | 281

https://oreil.ly/xIodR

Adding Nodes
You learned in Chapter 10 how to add a node using the Cassandra Cluster Manager
(ccm), which was a great way for you to get started quickly. Now let’s dig a little deeper
to discuss some of the motivations and procedures for adding new nodes and data
centers.

Adding Nodes to an Existing Data Center
If your application is successful, sooner or later you’ll need to add nodes to your clus‐
ter. This might be as part of a planned increase in capacity. Alternatively, it might be
in reaction to something you’ve observed in a health check, such as running low on
storage space, nodes that are experiencing high memory and CPU utilization, or
increasing read and write latencies.

Whatever the motivation for your expansion, you’ll start by installing and configur‐
ing Cassandra on the machines that will host the new nodes. The process is similar to
what we outlined in Chapter 10, but keep the following in mind:

• The Cassandra version must be the same as the existing nodes in the cluster. If
you want to do a version upgrade, upgrade the existing nodes to the new version
first and then add new nodes.

• You’ll want to use the same configuration values as you did for other nodes in
files such as cassandra.yaml and cassandra-env.sh, including the cluster_name,
dynamic_snitch, and partitioner.

• Use the same seed nodes as in the other nodes. Typically, the new nodes you add
won’t be seed nodes, so there is no need to add the new nodes to the seeds list in
your previously existing nodes.

• If you have multiple racks in your configuration, it’s a good idea to add nodes to
each rack at the same time to keep the number of nodes in each rack balanced.
For some reason, this always reminds us of the rule in the classic board game
Monopoly that requires houses to be spread evenly across properties.

• If you’re using single-token nodes, you’ll have to manually calculate the token
range that will be assigned to each node, as you learned in “Moving Tokens” on
page 281. A simple and effective way to keep the cluster balanced is to divide
each token range in half, doubling the number of nodes in the cluster.

• In most cases, you’ll want to configure your new nodes to begin bootstrapping
immediately—that is, claiming token ranges and streaming the data for those
ranges from other nodes. This is controlled by the autobootstrap property,
which defaults to true. You can add this to your cassandra.yaml file to explicitly
enable or disable auto bootstrapping.

282 | Chapter 12: Maintenance

Once the nodes are configured, you can start them, and use nodetool status to
determine when they are fully initialized.

You can also watch the progress of a bootstrap operation on a node by running the
nodetool bootstrap command. If you’ve started a node with auto bootstrapping dis‐
abled, you can also kick off bootstrapping remotely at the time of your choosing with
the command nodetool bootstrap resume.

After all new nodes are running, make sure to run a nodetool cleanup on each of
the previously existing nodes to clear out data that is no longer managed by those
nodes.

Adding a Data Center to a Cluster
There are several reasons you might want to add an entirely new data center to your
cluster. For example, let’s say that you are deploying your application to a new data
center in order to reduce network latency for clients in a new market. Or perhaps you
need an active-active configuration to support disaster recovery requirements for
your application. A third popular use case is to create a separate data center that can
be used for analytics without impacting online customer transactions.

Let’s explore how you can extend your cluster to a new data center. The same basic
steps for adding a node in an existing data center apply to adding nodes in a new data
center. Here are a few additional things you’ll want to consider as you configure the
cassandra.yaml file for each node:

• Make sure to configure an appropriate snitch for your deployment environment
using the endpoint_snitch property and any configuration files associated with
the snitch, for example, the cassandra-rackdc.properties file for the GossipingPro
pertyFileSnitch. Hopefully you planned for this when first setting up your
cluster, but if not, you will need to change the snitch in the initial data center. If
you do need to change the snitch, you’ll first want to change it on nodes in the
existing data center and perform a repair before adding the new data center.

• Select a couple of the nodes in the new data center to be seeds, and configure the
seeds property in the other nodes accordingly. Each data center should have its
own seeds independent of the other data centers.

• The new data center is not required to have the same token range configuration
as any existing data centers within the cluster. You can select a different number
of vnodes or use single-token nodes if so desired.

After all of the nodes in the new data center have been brought online, you then con‐
figure replication options for the NetworkTopologyStrategy for all keyspaces that
you wish to replicate to the new data center.

Adding Nodes | 283

For example, to extend the reservation keyspace into an additional data center, you
might execute the command:

cqlsh> ALTER KEYSPACE reservation WITH REPLICATION =
 {'class' : 'NetworkTopologyStrategy', 'DC1' : 3, 'DC2' : 3};

Note that the NetworkTopologyStrategy allows you to specify a different number of
replicas for each data center.

Next, run the nodetool rebuild command on each node in the new data center. For
example, the following command causes a node to rebuild its data by streaming from
data center DC1:

$ nodetool rebuild -- DC1

You can rebuild multiple nodes in parallel if desired; just remember to consider the
impact on your cluster before doing this. The nodetool abortrebuild command can
be used to stop a rebuild that is in progress.

Once the rebuilding is complete, your new data center is ready to use.

Don’t Forget Your Clients

You’ll also want to consider how adding another data center affects
your existing clients and their usage of LOCAL_* and EACH_* consis‐
tency levels. For example, if you have clients using the QUORUM con‐
sistency level for reads or writes, queries that used to be confined to
a single data center will now involve multiple data centers. You may
wish to switch to LOCAL_QUORUM to limit latency, or to EACH_QUORUM
to ensure strong consistency in each data center. To maintain high
availability from your clients, make sure they have designated the
existing data center as the local data center, before changing the
keyspace replication factor to extend to the new data center.

Handling Node Failure
From time to time, a Cassandra node may fail. Failure can occur for a variety of rea‐
sons, including hardware failure, a crashed Cassandra process, or a virtual machine
that has been stopped or destroyed. A node that is experiencing network connectivity
issues may be marked as failed in gossip and reported as down in nodetool status,
although it may come back online if connectivity improves.

284 | Chapter 12: Maintenance

Taking Nodes Offline

If you wish to investigate issues with a node that is still running but
not behaving normally, use the nodetool disablegossip and disa
blebinary commands to disable gossip and the CQL protocol,
respectively. This will make the node appear down without actually
killing it. Note that the node will still be accessible via JMX, so you
can use other nodetool commands to diagnose and fix issues, before
re-enabling via nodetool enablegossip and enablebinary. Simi‐
larly, the nodetool commands enablehandoff, disablehandoff,
enablehintsfordc, and disablehintsfordc give you the ability to
control a node’s participation in hinted handoff.

In this section, we’ll examine how to repair or replace failed nodes, as well as how to
remove nodes from a cluster gracefully.

Repairing Failed Nodes
The first thing to do when you observe there is a failed node is to try to determine
how long the node has been down. Here are some quick rules of thumb to know if
repair or replacement may be required:

• If the node has been down for less than the hints delivery window specified by
the max_hint_window_in_ms property, the hinted handoff mechanism should be
able to recover the node. Restart the node and see whether it is able to recover.
You can watch the node’s logs or track its progress using nodetool status.

• If the node has been down for more than the hints window and less than the
repair window defined lowest value of gc_grace_seconds for any of its contained
tables, then restart the node. If it comes up successfully, run a nodetool repair.

• If the node has been down for longer than the repair window, it should be rebuilt
or replaced to avoid tombstone resurrection.

Recovering from disk failure
A disk failure is one form of hardware failure from which a node may be able to
recover. If your node is configured to use Cassandra with multiple disks (JBOD), the
disk_failure_policy setting determines what action is taken when a disk failure
occurs, and how you may be able to detect the failure:

• If the policy is set to the default (stop), the node will stop gossiping and accept‐
ing queries, which will cause it to appear as a downed node in nodetool status.
You can still connect to the node via JMX.

Handling Node Failure | 285

• The policy setting stop_paranoid is similar to stop, with the addition that if any
failures are detected on startup, the node will shut down the JVM.

• If the policy is set to die, the JVM exits and the node will appear as a downed
node in nodetool status.

• If the policy is set to ignore, there’s no immediate way to detect the failure.
• If the policy is set to best_effort, Cassandra continues to operate using the

other disks, but a WARN log entry is written, which can be detected if you are
using a log aggregation tool. Alternatively, you can use a JMX monitoring tool to
monitor the state of the org.apache.cassandra.db.BlacklistedDirectoriesM
Bean, which lists the directories for which the node has recorded failures.

Once you’ve detected a disk failure, you may want to try restarting the Cassandra
process or rebooting the server. But if the failure persists, you’ll have to replace the
disk and delete the contents of the data/system directory in the remaining disks so
that when you restart the node, it comes up in a consistent state. See the DataStax
documentation for full instructions on recovering the node.

Replacing Nodes
If you’ve determined that a node can’t be repaired or recovered after hardware failure,
you will most likely want to replace it to keep your cluster balanced and maintain the
same capacity.

While you could replace a node by removing the old node (as in the next section) and
adding a new node, this is not a very efficient approach. Removing and then adding
nodes results in excess streaming of data.

The more efficient approach is to add a node that takes over the token ranges of an
existing node. To do this, you follow the previously outlined procedure for adding a
node, with one addition. Edit the jvm.options file for the new node to add the follow‐
ing JVM option (where <address> is the IP address or hostname of the node that is
being replaced):

JVM_OPTS="$JVM_OPTS -Dcassandra.replace_address_first_boot=<address>"

You can monitor the progress of bootstrapping by running nodetool netstats on
the replacement node. After the replacement node finishes bootstrapping, you can
remove this option, as it is not required for any subsequent restarts of the node.

If you’re using the PropertyFileSnitch, you’ll need to add the address of your new
node to the properties file on each node and do a rolling restart of the nodes in your
cluster. It is recommended that you wait 72 hours before removing the address of the
old node to avoid confusing the gossiper.

286 | Chapter 12: Maintenance

https://oreil.ly/2DQKS
https://oreil.ly/2DQKS

Replacing a Seed Node

If the node you’re replacing is a seed node, select an existing non-
seed node to promote to a seed node. You’ll need to add the pro‐
moted seed node to the seeds property in the cassandra.yaml file of
existing nodes.
Typically, these will be nodes in the same data center, assuming you
follow the recommendation of using a different seed list per data
center. In this way, the new node you create will be a nonseed node
and can bootstrap normally.

There are some additional details if you are using a package installation of Cassandra;
consult the documentation for your specific release for additional details.

Removing Nodes
If you decide not to replace a downed node right away, or just want to shrink the size
of your cluster, you’ll need to remove or decommission the node. The proper techni‐
que for removal depends on whether the node being removed is online or can be
brought online. We’ll look at three techniques, in order of preference: decommission,
remove, and assassinate.

Decommissioning a node
If the node is reporting as up, you decommission the node. Decommissioning a node
means pulling it out of service. When you execute the nodetool decommission com‐
mand, you’re calling the decommission() operation on Cassandra’s StorageService
class. This operation assigns the token ranges that the node was responsible for to
other nodes and then streams the data to those nodes. This is effectively the opposite
of the bootstrapping operation.

If you still have access to the cluster created using ccm in Chapter 10, you can perform
this operation with the command ccm node4 nodetool decommission. For other
commands in this section we’ll omit the ccm <node> part of the command for
simplicity.

While the decommission is running, the node will report that it is in a leaving state in
nodetool status via the code UL (up, leaving). You can check this in another termi‐
nal window:

$ nodetool status

Datacenter: datacenter1
=======================
Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
-- Address Load Tokens Owns (effective) Host ID Rack

Handling Node Failure | 287

UN 127.0.0.1 712 KiB 256 76.3% 9019859a-... rack1
UN 127.0.0.2 773.07 KiB 256 74.0% 5650bfa0-... rack1
UN 127.0.0.3 770.18 KiB 256 72.3% 158a78c2-... rack1
UL 127.0.0.4 140.69 KiB 256 77.4% 073da652-... rack1

You can examine the server log of the decommissioned node to see the progress. For
example, you’ll see log statements indicating the node is leaving and streaming data to
other nodes, followed by a series of statements summarizing the nodes to which data
is being streamed:

INFO [RMI TCP Connection(7)-127.0.0.4] 2019-12-11 22:02:20,815
 StorageService.java:1523 - LEAVING: sleeping 30000 ms for batch
 processing and pending range setup
INFO [RMI TCP Connection(7)-127.0.0.4] 2019-12-11 22:02:50,975
 StorageService.java:1523 - LEAVING: replaying batch log and streaming
 data to other nodes
INFO [RMI TCP Connection(7)-127.0.0.4] 2019-12-11 22:02:51,110
 StreamResultFuture.java:90 - [Stream #a5c6b340-1c9c-11ea-9fc3-c5e7d446c8a2]
 Executing streaming plan for Unbootstrap
INFO [RMI TCP Connection(7)-127.0.0.4] 2019-12-11 22:02:51,110
 StreamSession.java:277 - [Stream #a5c6b340-1c9c-11ea-9fc3-c5e7d446c8a2]
 Starting streaming to 127.0.0.1:7000
...

After this, you’ll see another log statement indicating the streaming of hints:

INFO [RMI TCP Connection(7)-127.0.0.4] 2019-12-11 22:02:51,137
 StorageService.java:1523 - LEAVING: streaming hints to other nodes

You can also use nodetool netstats to monitor the progress of data streaming to the
new replicas.

When the streaming is complete, the node announces its departure to the rest of the
cluster for a period of 30 seconds, and then stops:

INFO [RMI TCP Connection(7)-127.0.0.4] 2019-12-11 22:02:53,623
 StorageService.java:4231 - Announcing that I have left the ring for 30000ms
INFO [RMI TCP Connection(7)-127.0.0.4] 2019-12-11 22:03:23,629
 Server.java:213 - Stop listening for CQL clients
WARN [RMI TCP Connection(7)-127.0.0.4] 2019-12-11 22:03:23,630
 Gossiper.java:1822 - No local state, state is in silent shutdown, or node
 hasn't joined, not announcing shutdown
INFO [RMI TCP Connection(7)-127.0.0.4] 2019-12-11 22:03:23,630
 MessagingService.java:500 - Waiting for messaging service to quiesce

Finally, the decommission is complete:

INFO [RMI TCP Connection(7)-127.0.0.4] 2019-12-11 22:03:25,806
 StorageService.java:1523 - DECOMMISSIONED

If you call decommission on a node that can’t be decommissioned (such as one that
isn’t part of the ring yet, or on the only node available), you’ll see an error message to
that effect.

288 | Chapter 12: Maintenance

Decommissioning Does Not Remove Datafiles

Be warned that data is not automatically removed from a decom‐
missioned node. If you decide that you want to reintroduce a previ‐
ously decommissioned node into the ring with a different range,
you’ll need to manually delete its data first.

Removing a node

If the node is down, you’ll have to use the nodetool removenode command instead of
decommission. If your cluster uses vnodes, the removenode command causes Cassan‐
dra to recalculate new token ranges for the remaining nodes and stream data from
current replicas to the new owner of each token range.

If your cluster does not use vnodes, you’ll need to manually adjust the token ranges
assigned to each remaining node (as discussed in “Moving Tokens” on page 281)
prior to running removenode to perform the streaming. The removenode command
also provides a -- status option to allow you to monitor the progress of streaming.

Most nodetool commands operate directly on the node identified via the -h flag. The
syntax of the removenode command is a bit different, because it has to run on a node
that is not the one being removed.

If you’re following along, you can simulate a node being down by stopping it using
the nodetool stop command on the actual node, for example, ccm node3 nodetool
stop.

Rather than the IP address, the target node is identified via its host ID, which you can
obtain via the nodetool status command:

$ nodetool status
Datacenter: datacenter1
=======================
Status=Up/Down
|/ State=Normal/Leaving/Joining/Moving
-- Address Load Tokens Owns (effective) Host ID Rack
UN 127.0.0.1 712 KiB 256 100.0% 9019859a-... rack1
UN 127.0.0.2 773.07 KiB 256 100.0% 5650bfa0-... rack1
DN 127.0.0.3 770.18 KiB 256 100.0% 158a78c2-... rack1

$ nodetool removenode 158a78c2-4a41-4eaa-b5ea-fb9747c29cc3

Assassinating a node

If the nodetool removenode operation fails, you can also attempt a removenode
-force, and if that fails then run nodetool assassinate as a last resort. The assassi
nate command is similar to removenode, except that it does not re-replicate the
removed node’s data. This leaves your cluster in a state where repair is needed.

Handling Node Failure | 289

Another key difference from removenode is that the assassinate command takes the
IP address of the node to assassinate, rather than the host ID:

$ nodetool assassinate 127.0.0.3

Don’t Forget to Clean Up Seed Node Configuration

Whenever you remove a seed node, make sure you update the cas‐
sandra.yaml files on remaining nodes to remove the IP address of
the node that was removed. You’ll also want to make sure you still
have an adequate number of seed nodes (at least two per data
center).

Removing a data center
Should you wish to reduce the capacity of your cluster by eliminating an entire data
center, the procedure uses commands you’ve already learned. Before starting, you’ll
want to make sure that no clients are connecting to nodes in the cluster. One way to
check this would be to query the system_views.clients virtual table on each node,
as you learned in Chapter 11. You’ll want to run a full repair to make sure that all data
from the data center being decommissioned is preserved.

To begin decommissioning the data center, alter all of the keyspaces that reference the
data center to change the replication factor for the data center to zero. Then stop each
of the nodes. You can check your work when complete using nodetool status.

Upgrading Cassandra
Because Cassandra continues to thrive and grow, new releases are made available on a
regular basis, offering new features, improved performance, and bug fixes. You’ll
want to plan your adoption of these releases to take advantage of these improve‐
ments. As with any software upgrade, it’s highly recommended to put the new version
through its paces on your workload on development and test clusters before you
move to deployment on production systems.

When you determine it is time for an upgrade, be careful to consult the NEWS.txt file
found in the base directory of the new release and follow the upgrade instructions for
releases between your current and new releases. An upgrade can be a complex pro‐
cess, and it’s easy to cause a lot of damage to your cluster if you don’t follow the
instructions carefully.

A Cassandra cluster is upgraded via a process known as a rolling upgrade, as each
node is upgraded one at a time. To perform a rolling upgrade:

1. First, run a nodetool drain on the node to clear out any writes that still need to
be flushed to disk and stop receiving new writes.

290 | Chapter 12: Maintenance

2. Stop the node.
3. Make a backup copy of configuration files, such as cassandra.yaml, jvm.options,

and cassandra-env.sh, so they don’t get overwritten.
4. Install the new version.
5. Update the configuration files to match your specific deployment.

Best Practices for Updating Configuration Files
If you’re upgrading your version of Cassandra, you may be tempted to try to reuse the
cassandra.yaml and other configuration files from your previous deployment. The
problem with this approach is that new releases frequently include additional config‐
uration options. In addition, default values of configuration parameters occasionally
change. In both of these cases, you won’t be able to take advantage of the changes. If
you are making a significant jump, there’s even a chance that Cassandra won’t func‐
tion correctly with your old configuration file.

The best practice for an upgrade is to start with the cassandra.yaml file that comes
with the new release and merge custom changes you’ve made for your environment
from your old configuration file, such as the cluster name, seeds list, and the parti‐
tioner. Remember that the partitioner cannot be changed on a cluster that has data
in it.

If you are on a Unix-based system, the merge can typically be done fairly simply by
hand by using the diff command to identify the changes. Alternatively, you can use
merge tools provided by your source code configuration tool or integrated develop‐
ment environment (IDE).

Upgrading a major version number (and some minor version upgrades) requires you
to run the nodetool upgradesstables command to convert your stored datafiles to
the latest format. It’s also a good idea to use this command to ensure your SSTables
are on the current version before beginning an upgrade. As with other nodetool
commands you’ve examined, you can specify a keyspace or even tables within a key‐
space to be upgraded, but in general you’ll need to upgrade all of the node’s tables.
You can also update a node’s tables when it is offline via the bin/sstableupgrade script.

These steps are repeated for each node in the cluster. Although the cluster remains
operational while the rolling upgrade is in process, you should carefully plan your
upgrade schedule, taking into account the size of the cluster. While there are still
active nodes running the old version, you should avoid making schema changes or
running any repairs. To minimize the upgrade window, you can defer running upgra
desstables until after all the nodes are running the new version.

Upgrading Cassandra | 291

Backup and Recovery
Cassandra is built to be highly resilient to failure, with its support for configurable
replication and multiple data centers. However, there are still a number of good rea‐
sons for backing up data:

• Human error or defects in application logic could cause good data to be overwrit‐
ten and replicated to all nodes before the situation becomes known.

• SSTables can become corrupted.
• A multiple data center failure could wipe out your disaster recovery plan.

Cassandra provides two mechanisms for backing up data: snapshots and incremental
backups. Snapshots provide a full backup, while incremental backups provide a way to
back up changes a little at a time.

Full, Incremental, and Differential Backups
Database backup approaches typically take one of three forms:

• A full backup includes the entire state of a database (or specific tables within a
database) and is the most expensive to create.

• An incremental backup includes the changes made over a period of time, typically
the period of time since the last incremental backup. Taken together, a series of
incremental backups provides a differential backup.

• A differential backup includes all of the changes made since the previous full
backup.

Note that Cassandra does not provide a built-in differential backup mechanism,
focusing instead on full and incremental backups.

Cassandra’s snapshots and backups are complementary techniques that are used
together to support a robust backup and recovery approach.

Both the snapshot and backup mechanisms create hard links to SSTable files, which
avoids creating extra files in the short term. However, these files can accumulate over
time as compaction occurs and files that are deleted from the data directory are still
preserved via the hard links.

The tasks of copying these files to another location and deleting them so they do not
fill up disk space are left to the user. However, these tasks are easy to automate and
there are various tools that support this, such as Medusa or Jeremy Grosser’s Tables‐
nap.

292 | Chapter 12: Maintenance

https://oreil.ly/RTSfx
https://oreil.ly/RTSfx

Medusa: A Backup and Restore Tool
Spotify and The Last Pickle have also collaborated to produce Medusa, an open
source tool for managing backup and restore of Cassandra clusters. Medusa builds on
top of the nodetool backup and import operations to provide capabilities typically
needed in production systems. Features include the ability to back up and restore
individual nodes or entire clusters. The remote restore feature allows restoration to a
cluster other than the original cluster, which is typically challenging due to differ‐
ences in cluster and node names or different topologies. Backups can be stored locally
or in cloud storage such as Google Cloud Storage or Amazon S3.

Taking a Snapshot
The purpose of a snapshot is to make a copy of some or all of the keyspaces and tables
in a node and save it to what is essentially a separate database file. This means that
you can back up the keyspaces elsewhere or leave them where they are in case you
need to restore them later. When you take a snapshot, Cassandra first performs a
flush, and then makes a hard link for each SSTable file.

Taking a snapshot is straightforward:

$ nodetool snapshot
Requested creating snapshot(s) for [all keyspaces] with snapshot name
 [1576202815095] and options {skipFlush=false}
Snapshot directory: 1576202815095

Here, a snapshot has been taken for all of the keyspaces on the server, including Cas‐
sandra’s internal system keyspaces. If you want to specify only a single keyspace to
take a snapshot of, you can pass it as an additional argument: nodetool snapshot
reservation. Alternatively, you can use the -cf option to list the name of a specific
table.

You can list the snapshots that have been taken with the nodetool listsnapshots
command:

$ nodetool listsnapshots
Snapshot Details:
Snapshot name Keyspace name Column family name True size Size on disk
1576202815095 system_schema columns 12.66 KiB 12.69 KiB
...

Total TrueDiskSpaceUsed: 160.66 MiB

To find these snapshots on the filesystem, remember that the contents of the data
directory are organized in subdirectories for keyspaces and tables. There is a snap‐
shots directory under each table’s directory, and each snapshot is stored in a directory

Backup and Recovery | 293

https://oreil.ly/TEy4-

named for the timestamp at which it was taken. For example, you can find the reser
vations_by_confirmation table snapshots at:

CASSANDRA_HOME/data/data/reservation/
reservations_by_confirmationreservations_by_confirmation-
ae8e00601a0211ea82980de3aa109b1d/snapshots/

Each snapshot also contains a manifest.json file that lists the SSTable files included in
the snapshot. This is used to make sure that the entire contents of a snapshot are
present.

Point-in-Time Snapshots Across Multiple Nodes

The nodetool snapshot command only operates on a single
server. You will need to run this command at the same time on
multiple servers if you want a point-in-time snapshot, using a par‐
allel ssh tool such as pssh or one of the utilities listed.

Cassandra also provides an auto snapshot capability that takes a snapshot on every
DROP KEYSPACE, DROP TABLE, or TRUNCATE operation. This capability is enabled by
default via the auto_snapshot property in the cassandra.yaml file to prevent against
accidental data loss. There is an additional property, snapshot_before_compaction,
which defaults to false.

Clearing a Snapshot
You can also delete any snapshots you’ve made, say, after you’ve backed them up to
permanent storage elsewhere. It is a good idea to delete old snapshots before creating
a new one.

To clear your snapshots, you can manually delete the files or use the nodetool clear
snapshot command, which takes an optional keyspace option.

Enabling Incremental Backup
After you perform a snapshot, you can enable Cassandra’s incremental backup using
the nodetool enablebackup command. This command applies to all keyspaces and
tables in the node.

You can also check whether incremental backups are enabled with nodetool status
backup, and disable incremental backups with nodetool disablebackup.

When incremental backups are enabled, Cassandra creates backups as part of the
process of flushing SSTables to disk. The backup consists of a hard link to each data‐
file Cassandra writes under a backups directory; for example:

294 | Chapter 12: Maintenance

CASSANDRA_HOME/data/data/reservation/
reservations_by_confirmationreservations_by_confirmation-
ae8e00601a0211ea82980de3aa109b1d/backups/

To enable backups across a restart of the node, set the incremental_backups prop‐
erty to true in the cassandra.yaml file.

You can safely clear incremental backups after you perform a snapshot and save the
snapshot to permanent storage.

Restoring from Snapshot
The process of restoring a node from backups begins with collecting the most recent
snapshot plus any incremental backups since the snapshot. There is no difference in
how datafiles from snapshots and backups are treated.

Before starting a restore operation on a node, you will most likely want to truncate
the tables to clear any data changes made since the snapshot.

Don’t Forget to Restore the Schema!

Be aware that Cassandra does not include the database schema as
part of snapshots and backups. You will need to make sure that the
schema is in place before doing any restore operations. Fortunately,
this is easy to do using the cqlsh’s DESCRIBE TABLES operation,
which can easily be scripted.

If your cluster topology is the same as when the snapshots were taken, there have
been no changes to the token ranges for each node, and there are no changes to the
replication factor for the tables in question, you can copy the SSTable datafiles into
the data directory for each node. If the nodes are already running, running the node
tool import command will cause Cassandra to load the data. In releases prior to
Cassandra 4.0, you’ll use nodetool refresh instead.

If there has been a change to the topology, token ranges, or replication, you’ll need to
use a tool called sstableloader to load the data. In some ways, the sstableloader
behaves like a Cassandra node: it uses the gossip protocol to learn about the nodes in
a cluster, but it does not register itself as a node. It uses Cassandra’s streaming libra‐
ries to push SSTables to nodes. The sstableloader does not copy SSTable files
directly to every node, but inserts the data in each SSTable into the cluster, allowing
the partitioner and replication strategy of the cluster to do their work.

The sstableloader is also useful for moving data between clusters.

Backup and Recovery | 295

SSTable Utilities
There are several utilities found in the bin and tools/bin directories that operate
directly on SSTable datafiles on the filesystem of a Cassandra node. These files have
a .db extension. For example:

CASSANDRA_HOME/data/hotels-b9282710a78a11e5a0a5fb1a2fbefd47/ma-1-big-
Data.db/

In addition to the sstablemetadata, sstableloader, and sstableupgrade tools
you’ve seen already, here are a few other SSTable utilities:

sstableutil

This utility lists the SSTable files for a provided table name.

sstabledump

This utility outputs a given SSTable file in JSON format.

sstableverify

This utility verifies the SSTable files for a provided keyspace and table name,
identifying any files that exhibit errors or data corruption. This is an offline ver‐
sion of the nodetool verify command.

sstablescrub

This utility is an offline version of the nodetool scrub command. Because it
runs offline, it can be more effective at removing corrupted data from SSTable
files. If the tool removes any corrupt rows, you will need to run a repair.

sstablerepairedset

This marks specific SSTables as repaired or unrepaired to enable transitioning a
node to incremental repair. Because incremental repair is the default as of the 2.2
release, clusters created on 2.2 or later will not need to use this tool.

Several of the utilities help assist in managing compaction, which we’ll examine fur‐
ther in Chapter 13:

sstableexpiredblockers

This utility reveals blocking SSTables that prevent an SSTable from being deleted.
This class outputs all SSTables that are blocking other SSTables from getting
dropped so you can determine why a given SSTable is still on disk.

sstablelevelreset

This utility resets the level to 0 on a given set of SSTables, which will force the
SSTable to be compacted as part of the next compaction operation.

296 | Chapter 12: Maintenance

sstableofflinerelevel

This utility reassigns SSTable levels for tables using the LeveledCompactionStrat
egy. This is useful when a large amount of data is ingested quickly, such as with a
bulk import.

sstablesplit

This utility splits SSTables files into multiple SSTables of a maximum designated
size. This is useful if a major compaction has generated large tables that other‐
wise would not be compacted for a long time.

Under normal circumstances, you probably won’t need to use these tools very often,
but they can be quite useful in debugging and gaining a greater understanding of how
Cassandra’s data storage works. Utilities that modify SSTables, such as sstablelevel
reset, sstablerepairedset, sstablesplit, and sstableofflinerelevel, must be
run when Cassandra is not running on the local host.

Maintenance Tools
While it is certainly possible to maintain a Cassandra cluster entirely via nodetool,
many organizations, especially those with larger installations, have found it helpful to
make use of advanced tools that provide automated maintenance features and
improved visualizations. There are other community tools available, in addition to
“Medusa: A Backup and Restore Tool” on page 293 and “Reaper: A Tool for Repairs”
on page 280.

Netflix Priam
Priam is a tool built by Netflix to help manage its Cassandra clusters. Priam was the
King of Troy in Greek mythology, and the father of Cassandra. Priam automates the
deployment, starting, and stopping of nodes, as well as backup and restore opera‐
tions.

Priam is also well integrated with the Amazon Web Services (AWS) cloud environ‐
ment, although AWS deployment is not required. For example, Priam supports
deployment of Cassandra in Auto Scaling groups (ASGs), automated backup of snap‐
shots to the Simple Storage Service (S3), and configuration of networking and secu‐
rity groups for Cassandra clusters that span multiple regions.

While Priam does not include a user interface, it does provide a RESTful API that you
can use to build your own frontend or access directly via curl. The API provides the
ability to start and stop nodes, access nodetool commands (with JSON-formatted
output), and perform backup and restore operations.

Maintenance Tools | 297

https://oreil.ly/xswy1

DataStax OpsCenter
DataStax OpsCenter is a web-based management and monitoring solution for clus‐
ters using the DataStax Enterprise distribution of Cassandra. OpsCenter provides
metrics dashboards for tracking cluster health, and repair and backup services to
automate maintenance tasks discussed in this chapter.

Cassandra Sidecars
Cassandra has traditionally been known as extremely powerful, but difficult to oper‐
ate. One difficulty is the number of different tools, interfaces (JMX, CQL), and con‐
figuration files (XML, YAML, properties files) that an operator must learn. In
addition to the configuration, monitoring, and management of each individual node,
there are activities that involve interactions between multiple nodes in a cluster. For
example, deploying a cluster involves planning which nodes will be seeds, token
assignments (for single-token clusters), and setting topology properties. Upgrading
the Cassandra version across a cluster involves rolling restarts as individual nodes are
updated, and so on.

Many Cassandra operators have built tools that automate specific cluster mainte‐
nance activities, and we’ve cited several of them in this chapter. Many of these tools
require a co-process or sidecar that is resident on the same host as the Cassandra
daemon.

In 2018, community members articulated multiple competing proposals for an offi‐
cial Cassandra sidecar. Several of these began collaborating toward a unified
approach that became the first Cassandra Enhancement Proposal, also known as
CEP-1. The goals of this enhancement proposal are to produce a minimum viable
product (MVP) implementation, with other CEPs likely to extend the performance of
the sidecar. This initial implementation will be an experimental feature and is
expected to automate:

• Health checks for determining if a node can serve as a coordinator or receive
writes, or if a cluster can achieve required consistency for a given keyspace

• Bulk commands to be executed on some or all nodes, such as getting and retriev‐
ing settings

• Life cycle commands to start and stop nodes according to best practices, for
example, executing a drain during stop

• Desire-based orchestration, such as rolling restarts, or in the future, a rolling ver‐
sion upgrade

• Automating scheduled maintenance, such as cleanup in the initial implementa‐
tion, and compaction and backups in future releases

298 | Chapter 12: Maintenance

https://oreil.ly/w2Ros

• Exposing a standard metrics agent, such as Prometheus

Design constraints for sidecars include:

• Sidecar processes should be separately installable or deployable from the Cassan‐
dra daemon and run in their own JVM.

• Changes to the Cassandra daemon should be minimized.
• Sidecars should expose HTTP-based RESTful APIs for maximum accessibility by

other tools and avoid usage of SSH and JMX due to the security vulnerabilities of
these interfaces.

The Cassandra sidecar(s) will provide a much-needed building block for improving
the management of Cassandra, including integrability with other management tools
and frameworks.

Cassandra Kubernetes Operators
We’ve previously discussed the deployment of Cassandra nodes in Docker containers
in Chapter 3 and creating clusters of these nodes in Chapter 10. Now it’s time to learn
about managing containerized Cassandra clusters in Kubernetes.

Kubernetes (or K8s for short) is a system for automating the deployment and man‐
agement of containerized applications. It is an open source system based on Borg,
Google’s system built up over many years to run and manage billions of containers
within its internal infrastructure. Kubernetes has become the leading platform, surg‐
ing in popularity ahead of similar platforms, such as Docker Swarm or Apache
Mesos.

Kubernetes provides the building blocks for describing distributed systems that are
portable across cloud providers and supports hybrid cloud and multicloud deploy‐
ments. These building blocks include automated deployment and scaling, self healing,
service discovery, load balancing, secret management, and others.

Figure 12-1 shows a few key K8s concepts and how they apply to managing a Cassan‐
dra cluster. This is not intended as prescriptive but only to illustrate K8s features and
concepts that are useful for managing Cassandra.

Maintenance Tools | 299

https://kubernetes.io

Figure 12-1. Running Cassandra in Kubernetes

A Kubernetes cluster is composed of master and worker nodes. A worker node is a
physical or virtual machine that can host pods, the basic execution unit of a K8s appli‐
cation. A pod can run a single container or multiple related containers; for example,
Cassandra and sidecars could run in a single pod.

Kubernetes does not provision nodes; they must be created externally and registered
with the Kubernetes master. Each node has an agent known as a kubelet that is
responsible for running pods that are allocated to it on an underlying container run‐
time, such as Docker, as well as agents that support cross-cutting concerns, such as
logging.

A Kubernetes application consists of a collection of pods that together provide some
logical capability. Applications can expose services, and you can define namespaces to
help define application boundaries.

The Kubernetes control plane consists of the Kubernetes Master and the kubelet run‐
ning on each node. The master is typically run on dedicated hardware (although it is
not required to do so), and you can run multiple masters for high availability. The
K8s Master contains an API server for the K8s API, a data store (typically etcd) used
to track cluster status, a scheduler, and controllers. You use the kubectl client to com‐
municate with the master.

Kubernetes is a declarative system—you specify the desired state of your cluster
rather than providing the detailed instructions for how to get there. A controller is a
loop that observes the K8s cluster to detect differences between the current and
desired state and executes actions that move toward the desired state. There are con‐
trollers that manage the deployment of pods to nodes, tracking node health, the con‐
figuration of networking and load balancers, exposing pod interfaces as services,
interfacing with cloud infrastructure, and more.

300 | Chapter 12: Maintenance

While Kubernetes can be used to deploy infrastructure such as messaging frame‐
works or databases, it does not know how to operate this infrastructure. A Kuber‐
netes operator represents an implementation of the knowledge human operators
typically have about deploying applications, their expected behavior, and how to
detect and correct issues.

An operator consists of a controller and a custom resource definition (CRD). Thus, a
Cassandra operator would consist of a Cassandra controller and a CRD that defines
the contents of a Cassandra cluster, consisting of multiple pods, network infrastruc‐
ture, and storage. A CRD allows the definition of a cluster as a single resource based
on a provided cluster name, Kubernetes namespace, node count, persistent volumes
to use, and custom Cassandra configuration settings for the cassandra.yaml file.
These parameters are used to configure each pod via the kubelet. Cassandra CRDs
typically use a feature called anti-affinity to ensure that nodes in a Cassandra cluster
are started on separate worker nodes to ensure high availability.

A Kubernetes deployment describes how to deploy pods based on a provided con‐
tainer image, where each pod is essentially the same and could be deployed to any
worker node or even replaced by a pod running the same container image on another
node at the direction of the scheduler. A stateful set is similar to a deployment but
includes the ability to have a fixed identity for each pod, with stable network end‐
points and persistent storage.

Cassandra and the Origin of Stateful Sets

The concept of stateful sets was added to facilitate the deployment
of Cassandra and other databases. In fact, Cassandra is now the
featured database in the Kubernetes tutorial on stateful sets.

For storage, Kubernetes provides volumes that have the same life cycle as the pod, but
for Cassandra nodes you’ll need storage that is more long-lasting. Thankfully, Kuber‐
netes also allows you to configure persistent volumes representing external storage
provided as a resource to the Kubernetes cluster. A Cassandra CRD can define a per‐
sistent volume claim for each Cassandra pod that Kubernetes will use to allocate stor‐
age on a persistent volume.

A service is an abstraction of an application interface, where the implementation
might consist of multiple pods behind a load balancer. A Cassandra CRD can
describe a service that represents exposed endpoints of one or more Cassandra nodes
for your client applications to use as contact points.

The operator is a common pattern in Kubernetes for providing automated manage‐
ment of complex applications such as databases. Operators typically consist of one or
more custom resources that extend the Kubernetes API and a controller to manage

Maintenance Tools | 301

https://oreil.ly/2QjHR

the state of each type of resource. Operators are often packaged with a script known
as a Helm chart to describe a typical deployment using a Cassandra operator.

Several organizations have written Cassandra operators to automate the maintenance
operations discussed in this chapter, such as scaling clusters up and down, perform‐
ing automated repair and backup, restarting or replacing downed nodes, and rolling
restarts and upgrades:

• Orange has released an operator called CassKop. This is arguably the most
mature of the operators, with an extension for managing multiregion clusters in
progress. You can read more about this operator on the blog.

• The Instaclustr Cassandra operator leverages experience from providing
Cassandra-as-a-Service on multiple clouds. You can read more about this opera‐
tor and its design on DZone.

• DataStax has an open source operator called cass-operator, which is based on the
code it uses to manage its Astra service. cass-operator supports deployment of
both Cassandra and DataStax Enterprise clusters.

After initially working independently, these organizations and other community
members began collaborating through the Cassandra Enhancement Proposal (CEP)
process under CEP-2. As a result of this process, cass-operator was selected as the
operator that the community would rally behind, and the operator has been incorpo‐
rated as part of the K8ssandra project.

K8ssandra, A Data Platform for Kubernetes
The open-source K8ssandra project was created by John Sanda and other engineers at
DataStax in late 2020 as a complete data platform for running Cassandra on Kuber‐
netes, bringing cass-operator together with other tools typically needed for produc‐
tion deployments. These tools include Cassandra sidecars for management and
metrics (see “Cassandra Sidecars” on page 298), Prometheus and Grafana for metrics
collection and aggregation, Medusa for backup and restore (see “Medusa: A Backup
and Restore Tool” on page 293), and Reaper for performing regular repair operations
(see “Reaper: A Tool for Repairs” on page 280). K8ssandra also deploys the Stargate
data gateway (see “Stargate, An Open Source Data Gateway” on page 184) to provide
developer-friendly APIs on top of Cassandra.

While the K8ssandra 1.x release series relies on the Helm package manager for
deploying resources on Kubernetes clusters, performing more complex management
tasks and extending Cassandra clusters across multiple Kubernetes clusters has pro‐
ven more difficult, so the team began implementing a K8ssandra operator in
mid-2021, working toward a 2.0 release.

302 | Chapter 12: Maintenance

https://oreil.ly/3tavg
https://oreil.ly/lfkdy
https://oreil.ly/VAl_v
https://oreil.ly/UmQnM
https://github.com/k8ssandra/cass-operator
https://oreil.ly/LDk6D
https://oreil.ly/PJFKR
https://oreil.ly/PJFKR
https://github.com/k8ssandra/k8ssandra-operator

Summary
In this chapter, you learned some of the ways you can interact with Cassandra to per‐
form routine maintenance tasks; add, remove, and replace nodes; back up and
recover data with snapshots, and more. You also looked at some tools that help auto‐
mate these tasks to speed up maintenance and reduce errors. Now you’re ready to
apply the knowledge you’ve obtained about configuring, monitoring, and maintain‐
ing Cassandra clusters to tune your clusters for optimal performance.

Summary | 303

CHAPTER 13

Performance Tuning

In this chapter, you’ll learn how and why to tune Cassandra to improve performance,
and a methodology for setting performance goals, monitoring your cluster’s perfor‐
mance, simulating stress loads, and troubleshooting performance goals. You’ll also
learn about specific settings in Cassandra’s configuration files, and options on indi‐
vidual tables, and how they affect the performance and resource utilization of your
cluster.

Managing Performance
To be effective at achieving and maintaining a high level of performance in your clus‐
ter, it’s helpful to think of managing performance as a process that begins with the
architecture of your application and continues through development and operations.

Setting Performance Goals
Before beginning any performance tuning effort, it is important to have clear goals in
mind, whether you are just getting started on deploying an application, or maintain‐
ing an existing one.

When planning a cluster, it’s important to understand how the cluster will be used:
the number of clients, intended usage patterns, expected peak periods, and so on.
This is useful in planning the initial cluster capacity and for planning cluster growth,
as discussed in Chapter 10.

An important part of this planning effort is to identify clear performance goals in
terms of both throughput (the number of queries serviced per unit time) and latency
(the time to complete a given query). Usually, you will be trying to increase through‐
put while reducing latency. A good place to start is with the use cases that you antici‐
pate will put the greatest load on your cluster.

305

For example, let’s say that you’re building an ecommerce website for hotel reserva‐
tions that uses the data model designed in Chapter 5. If you’re following a process of
setting performance goals for various operations on the website, you might anticipate
that most of the traffic will come from customers browsing the site, shopping for
available hotel rooms. As a result, you set a goal for the site to respond to each search
for available rooms in under a second. Through the process of allocating that perfor‐
mance budget to various services and layers, you might then arrive at the following
goal for shopping queries on your Cassandra cluster:

The cluster must support 30,000 read operations per second from the avail
able_rooms_by_hotel_date table with a 99th percentile read latency of 5 ms.

This is a statement that includes both throughput and latency goals. Throughput
goals are typically expressed in terms of number of operations per second that can be
supported by the cluster as a whole. Latency goals are expressed in terms of percentile
distribution: for example, the goal that 99% of all queries complete in under 5 milli‐
seconds.

In this chapter, you’ll learn how to measure performance goals similar to the one here
using nodetool tablestats. It’s useful to have similar goals for each of the access
patterns and resulting Cassandra queries that your application must support. You can
use the techniques identified in Chapter 11 to track performance against these goals
and identify when performance is trending in the wrong direction.

The USE Method

Brendan Gregg has created a methodology known for analyzing
system performance based on the utilization, saturation, and errors
(USE) of each system resource, including CPU, memory, and disk
and network I/O. By tracking performance metrics and thresholds
across multiple resources, you can have a better awareness of the
state of your system holistically, identifying and addressing root
causes instead of making naive attempts to optimize individual
resources in isolation.
For example, tracking CPU and disk I/O in parallel, you might
identify a period of increased CPU activity corresponding to satu‐
ration of disk I/O corresponding to increased query latency. Fur‐
ther investigation of this might point to a high compaction
workload, especially if you can correlate the high-activity period
with warning messages in Cassandra’s logs. This might lead you to
identifying issues with your data model or application, such as
usage that results in a very wide partition or a large number of
tombstones. You can read more about the USE method at Brendan
Gregg’s website.

306 | Chapter 13: Performance Tuning

https://oreil.ly/T2Ld2
https://oreil.ly/T2Ld2

Regardless of your specific performance goals, it’s important to remember that per‐
formance tuning is all about trade-offs. Having well-defined performance goals will
help you articulate what trade-offs are acceptable for your application. For example:

• Enabling SSTable compression in order to conserve disk space, at the cost of
reading more data than necessary and additional CPU processing

• Throttling network usage and threads, which can be used to keep network and
CPU utilization under control, at the cost of reduced throughput and increased
latency

• Increasing or decreasing the number of threads allocated to specific tasks such as
reads, writes, or compaction in order to affect the priority relative to other tasks
or to support additional clients

• Increasing heap size in order to decrease query times
• Reducing the read or write consistency level required by your application in

order to increase throughput

These are just a few of the trade-offs that you will find yourself considering in perfor‐
mance tuning. We’ll highlight others throughout the rest of this chapter.

Benchmarking and Stress Testing
Once you have set performance targets, it’s helpful to create some load on your clus‐
ter to get an idea of the performance you can expect in your production deployment.
There are two main approaches to consider: benchmarking and stress testing.

Benchmarking
This is the process of measuring the performance of software under a defined
load. The purpose of this might be to compare one database against another, or
to compare different configurations of the same system. There are standard data‐
base benchmarks available, such as the Yahoo Cloud Serving Benchmark (YCSB),
which has proven popular for benchmarking distributed NoSQL databases. How‐
ever, it can be difficult to get an apples-to-apples comparison between different
databases without a significant amount of tuning.

Stress testing
This is similar to benchmarking in that you are generating a load on the system.
However, in this case the goal is slightly different. Instead of measuring perfor‐
mance for comparison against a baseline, in a stress test you increase the load on
the system in order to discover errors and performance degradations, such as
bottlenecks.

Our recommendation is to focus on creating benchmarks and stress tests that exer‐
cise your Cassandra data models on test clusters resembling your desired production

Managing Performance | 307

topology and configuration options, with loads resembling your expected nominal
and peak operating conditions. It’s especially important to have tests available that
can verify there is no performance degradation when you make significant changes to
your data models, cluster configuration and topology, or application.

Using cassandra-stress

The first tool to examine is one that ships with Cassandra. You can use cassandra-
stress to run a stress test on your Cassandra cluster. To run cassandra-stress, nav‐
igate to the <cassandra-home>/tools/bin directory and run the command:

$ cassandra-stress write n=1000000

First, the stress tool will print out a detailed description of your chosen configuration,
including how the tool will connect to the cluster, the mix of CQL commands that
will be run, and the schema to be used for testing, including how random values will
be generated. Then you’ll see a few lines indicating the test is starting:

Connected to cluster: reservation_cluster, max pending requests per connection
 128, max connections per host 8
Datacenter: datacenter1; Host: localhost/127.0.0.1:9042; Rack: rack1
Datacenter: datacenter1; Host: /127.0.0.2:9042; Rack: rack1
Datacenter: datacenter1; Host: /127.0.0.3:9042; Rack: rack1
Created keyspaces. Sleeping 1s for propagation.
Sleeping 2s...
Warming up WRITE with 50000 iterations...
Running WRITE with 200 threads for 1000000 iteration
...

If you’re using the ccm tool introduced in Chapter 10 to run a local cluster, you could
run ccm node1 stress write n=1000000.

The output lists the nodes to which the tool is connected (in this case, a cluster cre‐
ated using ccm) and creates a sample keyspace and table to which it can write data.
The test warms up by doing 50,000 writes, and then the tool begins to output metrics
as it continues to write, which we’ve omitted for brevity. The tool creates a pool of
threads (defaulting to 200) that perform one write after another, until it inserts one
million rows. Finally, it prints a summary of results:

Results:
Op rate : 22,187 op/s [WRITE: 22,187 op/s]
Partition rate : 22,187 pk/s [WRITE: 22,187 pk/s]
Row rate : 22,187 row/s [WRITE: 22,187 row/s]
Latency mean : 9.0 ms [WRITE: 9.0 ms]
Latency median : 1.0 ms [WRITE: 1.0 ms]
Latency 95th percentile : 50.9 ms [WRITE: 50.9 ms]
Latency 99th percentile : 131.9 ms [WRITE: 131.9 ms]
Latency 99.9th percentile : 267.9 ms [WRITE: 267.9 ms]
Latency max : 628.6 ms [WRITE: 628.6 ms]
Total partitions : 1,000,000 [WRITE: 1,000,000]

308 | Chapter 13: Performance Tuning

Total errors : 0 [WRITE: 0]
Total GC count : 0
Total GC memory : 0.000 KiB
Total GC time : 0.0 seconds
Avg GC time : NaN ms
StdDev GC time : 0.0 ms
Total operation time : 00:00:45

Let’s unpack these results. They summarize the insertion of one million values into a
completely untuned three-node cluster running on a single machine using ccm. The
insertions completed in about 45 seconds, which represents a rate over 20,000 writes
per second. The median latency per write operation was 1 millisecond, although a
small number of writes took longer. Your results will, of course, vary depending on
the configuration of your cluster, including topology and choice of hardware.

Now that you have all of this data in the database, use the test to read some values,
too:

$ cassandra-stress read n=200000
...
Warming up READ with 50000 iterations...
Thread count was not specified

Running with 4 threadCount
Running READ with 4 threads for 200000 iteration
...

If you examine the output, you will see that it first performs a run using a small num‐
ber of threads (4) and ramps up the number of threads used on each subsequent run,
printing the results of each run and comparing the results with the previous run.
Here’s an example of a run that used 121 client threads:

Running with 121 threadCount
Running READ with 121 threads for 200000 iteration
...

Results:
Op rate : 23,493 op/s [READ: 23,493 op/s]
Partition rate : 23,493 pk/s [READ: 23,493 pk/s]
Row rate : 23,493 row/s [READ: 23,493 row/s]
Latency mean : 5.1 ms [READ: 5.1 ms]
Latency median : 0.9 ms [READ: 0.9 ms]
Latency 95th percentile : 22.0 ms [READ: 22.0 ms]
Latency 99th percentile : 88.8 ms [READ: 88.8 ms]
Latency 99.9th percentile : 146.3 ms [READ: 146.3 ms]
Latency max : 305.1 ms [READ: 305.1 ms]
Total partitions : 200,000 [READ: 200,000]
Total errors : 0 [READ: 0]
Total GC count : 0
Total GC memory : 0.000 KiB
Total GC time : 0.0 seconds
Avg GC time : NaN ms

Managing Performance | 309

StdDev GC time : 0.0 ms
Total operation time : 00:00:08

Improvement over 81 threadCount: 6%

The tool periodically prints out statistics about the last several writes. As you can see,
Cassandra doesn’t read quite as fast as it writes; the mean read latency was around 5
ms. Remember, though, that these results were generated with default configuration
options on a regular workstation running other programs. Regardless, this is a great
tool to help you do performance tuning for your environment and to get a set of
numbers that indicates what to expect in your cluster.

You can also run cassandra-stress on your own tables by creating a specification in
a yaml file. For example, you could create a cqlstress-hotel.yaml file to describe read
and write queries on tables in the hotel keyspace. This file defines queries that you
could use to stress the available_rooms_by_hotel_date table:

keyspace: hotel
table: available_rooms_by_hotel_date

columnspec:
 - name: date
 cluster: uniform(20..40)

insert:
 partitions: uniform(1..50)
 batchtype: LOGGED
 select: uniform(1..10)/10

queries:
 simple1:
 cql: select * from available_rooms_by_hotel_date
 where hotel_id = ? and date = ?
 fields: samerow
 range1:
 cql: select * from available_rooms_by_hotel_date
 where hotel_id = ? and date >= ? and date <= ?
 fields: multirow

You can then execute these queries in a run of cassandra-stress. For example, you
might run a mixed load of writes, single item queries, and range queries, as follows:

$ cassandra-stress user profile=~/cqlstress-hotel.yaml
 ops\(simple1=2,range1=1,insert=1\) no-warmup

The numbers associated with each query indicate the desired ratio of usage. This
command performs three reads for every write.

310 | Chapter 13: Performance Tuning

Additional Help on cassandra-stress

You can execute cassandra-stress help to get the list of sup‐
ported commands and options, and cassandra-stress help <com
mand> to get more information on a specific command.

Additional load testing tools
There are a few additional tools for load and stress testing that you may find useful:

tlp-stress

The Last Pickle have released tlp-stress, which is available on GitHub. First
created by Jon Haddad, tlp-stress is a command-line tool similar to
cassandra-stress, but with simpler syntax. It comes with built-in workloads for
common data model patterns such as time-series and key-value data models.
These workloads offer parameters that allow you to tailor behavior such as the
number of requests and the read/write mix. It also includes workloads that
demonstrate the performance impact of features that can make Cassandra work
harder, such as materialized views, lightweight transactions, and queries using
ALLOW FILTERING. Planned improvements include the ability to add your own
custom workloads.

NoSQLBench
NoSQLBench (previously known as DSBench), is a performance and load testing
platform provided by DataStax for Cassandra and DataStax Enterprise. The goal
of the project is to provide an extensible framework for running tests ranging
from a simple set of preconfigured tests, to tests based on your application
schema that emulate your anticipated access patterns. NoSQLBench is built on
the extensible concept of workloads that allow you to compose more complex
test scenarios. You can read more about this tool on the DataStax blog and find
usage instructions on the project’s GitHub page.

Apache JMeter
JMeter is an open source Java framework designed for functional and load test‐
ing. Originally designed for testing web applications, it has been extended to
allow testing of applications via a variety of applications and protocols, and
works with many continuous integration frameworks. You can see an example of
stress testing a Cassandra cluster using Groovy scripts and the DataStax Java
Driver in Alain Rastoul’s blog post.

Managing Performance | 311

https://oreil.ly/YCEas
https://oreil.ly/JXfdw
https://oreil.ly/YDCgk
https://oreil.ly/6sNnQ
https://oreil.ly/BeoQB

Monitoring Performance
As the size of your cluster grows, the number of clients increases, and more keyspaces
and tables are added, the demands on your cluster will begin to pull in different
directions. Taking frequent baselines to measure the performance of your cluster
against its goals will become increasingly important.

You learned in Chapter 11 about the various metrics that are exposed via JMX,
including performance-related metrics for Cassandra’s StorageProxy and individual
tables. In that chapter, you also examined nodetool commands that publish
performance-related statistics such as nodetool tpstats and nodetool tablestats,
and saw how these can help identify loading and latency issues.

Now let’s look at two additional nodetool commands that present performance statis‐
tics formatted as histograms: proxyhistograms and tablehistograms. First, examine
the output of the nodetool proxyhistograms command:

$ nodetool proxyhistograms

proxy histograms
Percentile Read Latency Write Latency Range Latency ...
 (micros) (micros) (micros) ...
50% 654.95 450.12 1629.72 ...
75% 943.13 504.35 5839.59 ...
95% 4055.27 608.40 62479.63 ...
98% 62479.63 692.77 107964.79 ...
99% 107964.79 888.01 129557.75 ...
Min 263.21 229.89 545.79 ...
Max 107964.79 66871.26 155469.30 ...

The output shows the latency of reads, writes, and range requests for which the
requested node has served as the coordinator. We’ve shortened the output to omit the
additional columns CAS Read Latency, CAS Write Latency, and View Write Latency.
These columns track read and write latency associated with Cassandra’s lightweight
transactions (CAS is an abbreviation of Check and Set), and latency for writing to
materialized view tables. These columns are only applicable if you are using these
features.

The output is expressed in terms of percentile rank as well as minimum and maxi‐
mum values, in microseconds. Running this command on multiple nodes can help
identify the presence of slow nodes in the cluster. A large range latency (in the hun‐
dreds of milliseconds or more) can be an indicator of clients using inefficient range
queries, such as those requiring the ALLOW FILTERING clause or index lookups.

While the view provided by proxyhistograms is useful for identifying general perfor‐
mance issues, you’ll frequently need to focus on performance of specific tables. This
is what nodetool tablehistograms allows you to do. Let’s look at the output of this
command against the available_rooms_by_hotel_date table:

312 | Chapter 13: Performance Tuning

nodetool tablehistograms hotel available_rooms_by_hotel_date

hotel/available_rooms_by_hotel_date histograms
Percentile SSTables Write Latency Read Latency Partition Size Cell Count
 (micros) (micros) (bytes)
50% 1.00 146.83 654.95 2759 179
75% 1.00 157.77 1358.10 6742 179
95% 1.00 801.59 5839.59 19034 179
98% 1.00 1684.31 12719.37 31559 179
99% 1.00 2841.44 12719.37 40520 179
Min 1.00 72.93 219.34 2300 179
Max 1.00 2841.44 12719.37 223548 179

The output of this command is similar. It omits the range latency statistics and
instead provides counts of SSTables read per query. The partition size and cell count
are provided, where cells are values stored in a partition. These metrics provide
another way of identifying large partitions.

Once you’ve gained familiarity with these metrics and what they tell you about your
cluster, you should identify key metrics to monitor and even implement automated
alerts that indicate your performance goals are not being met. You can accomplish
this via frameworks, discussed in Chapter 11.

Analyzing Performance Issues
It’s not unusual for the performance of a cluster that has been working well to begin
to degrade over time. When you detect a performance issue, you’ll want to begin ana‐
lyzing it quickly to ensure the performance doesn’t continue to deteriorate. Your goal
in these circumstances should be to determine the root cause and address it.

In this chapter, you’ll learn many configuration settings that you can use to tune the
performance of each node in a cluster as a whole, across all keyspaces and tables. It’s
also important to narrow performance issues down to specific tables and even
queries.

In fact, the quality of the data model is usually the most influential factor in the per‐
formance of a Cassandra cluster. For example, a table design that results in partitions
with a growing number of rows can begin to degrade the performance of the cluster
and manifest in failed repairs, or streaming failures on addition of new nodes. Con‐
versely, partitions with partition keys that are too restrictive can result in rows that
are too narrow, requiring many partitions to be read to satisfy a simple query.

Managing Performance | 313

Beware the Large Partition

In addition to the nodetool tablehistograms discussed earlier,
you can detect large partitions by searching logs for WARN mes‐
sages that reference “Writing large partition” or “Compacting large
partition.” The threshold for warning on compaction of large parti‐
tions is set by the compaction_large_partition_warning_thres
hold_mb property in the cassandra.yaml file.

You’ll also want to learn to recognize instances of the anti-patterns discussed in
Chapter 5, such as queues, or other design approaches that generate a large amount of
tombstones.

Tracing
In Chapter 11, we described tracing as one of the key elements of an overall observa‐
bility strategy for your applications. Now you’re ready to explore how tracing fits into
the strategy. The idea is to use metrics and logging to narrow your search down to a
specific table and query of concern, and then to use tracing to gain detailed insight.
Tracing is an invaluable tool for understanding the communications between clients
and nodes involved in each query and the time spent in each step. This helps you see
the performance implications of design decisions you make in your data models and
choice of replication factors and consistency levels.

There are several ways to access trace data. Let’s start by looking at how tracing works
in cqlsh. First, enable tracing, and then execute a simple command:

cqlsh:hotel> TRACING ON
Now Tracing is enabled
cqlsh:hotel> SELECT * from hotels where id='AZ123';

 id | address | name | phone | pois
-------+---------+---------------------------------+----------------+------
 AZ123 | null | Super Hotel Suites at WestWorld | 1-888-999-9999 | null

(1 rows)

Tracing session: 6669f210-de99-11e5-bdb9-59bbf54c4f73

 activity | timestamp | source | source_elapsed
--------------------+----------------------------+-----------+----------------
Execute CQL3 query | 2019-12-23 21:03:33.503000 | 127.0.0.1 | 0
Parsing SELECT *... | 2019-12-23 21:03:33.505000 | 127.0.0.1 | 16996
...

We’ve truncated the output quite a bit for brevity, but if you run a command like this,
you’ll see activities such as preparing statements, read repair, key cache searches, data

314 | Chapter 13: Performance Tuning

lookups in memtables and SSTables, interactions between nodes, and the time associ‐
ated with each step, in microseconds.

You’ll want to be on the lookout for queries that require a lot of internode interaction,
as these may indicate a problem with your schema design. For example, a query based
on a secondary index will likely involve interactions with most or all of the nodes in
the cluster.

Once you are done using tracing in cqlsh, you can turn it off using the TRACING OFF
command. Tracing visualization is also supported in tools including DataStax
DevCenter and DataStax Studio, as well as your application code using DataStax driv‐
ers. Taking the DataStax Java Driver as an example, tracing is individually enabled or
disabled on a Statement using the setTracing() operation.

To obtain the trace of a query, take a look at the ResultSet object. You may have
noticed in previous examples that the CqlSession.execute() operation always
returns a ResultSet, even for queries other than SELECT queries. This enables you to
obtain metadata about the request via the getExecutionInfo() operation, even when
there are no results to be returned. The resulting ExecutionInfo includes the consis‐
tency level that was achieved, the coordinator node and other nodes involved in the
query, and information about tracing via the getQueryTrace() operation.

The available query trace information includes the trace ID, coordinator node, and a
list of events representing the same information available in cqlsh. Because this oper‐
ation triggers a read from the tables in the system_traces keyspace, there is also an
asynchronous variant: getQueryTraceAsync(). Additional configuration options are
available under the datastax-java-driver.advanced.request.trace namespace.

Traces Aren’t Forever

Cassandra stores query trace results in the system_traces key‐
space. Since the 2.2 release, Cassandra also uses tracing to store the
results of repair operations. Cassandra limits the TTL on these
tables to prevent them from filling up your disk over time. You can
configure these TTL values by editing the tracetype_query_ttl
and tracetype_repair_ttl properties in the cassandra.yaml file.

On the server side, you can configure individual nodes to trace some or all of their
queries via the nodetool settraceprobability command. This command takes a
number between 0.0 (the default) and 1.0, where 0.0 disables tracing and 1.0 traces
every query. This does not affect tracing of individual queries as requested by clients.
Exercise care in changing the trace probability, as a typical trace session involves 10
or more writes. Setting a trace level of 1.0 could easily overload a busy cluster, so a
value such as 0.01 or 0.001 is typically appropriate.

Managing Performance | 315

Distributed Tracing Frameworks
As microservice architectures have gained in popularity, developers have recognized
the challenge of analyzing and debugging the interactions across multiple services
and infrastructure components that are typically required to satisfy a client request.
Google’s Dapper paper from 2010 introduced the concept of distributed tracing as an
approach for tracking these interactions in order to identify sources of error and poor
performance. Distributed tracing solutions use a correlation identifier generated at
the entry point to the system that is passed as metadata between the various net‐
worked components. The correlation identifier is included in log entries at each com‐
ponent. Log aggregation tools can then pull the logging statements with the same
correlation ID to assemble a distributed trace of what happened. This can be useful to
dig into the overall context of your application to identify any cases where Cassandra
may be impacting performance.

The Cassandra 3.4 release introduced the improvement documented in
CASSANDRA-10392 for pluggable query trace logging. You can override the default
tracing implementation found in the org.apache.cassandra.tracing package by
setting the system property cassandra.custom_tracing_class with the name of a
class that extends the abstract Tracing class and adding the implementation to Cas‐
sandra’s classpath.

You can read about an implementation Mick Semb Wever created using Zipkin query
tracing on The Last Pickle blog. The implementation is available on GitHub. The Zip‐
kin tracing implementation leverages the ability provided by client drivers to add cus‐
tom metadata to CQL queries, including a client-provided correlation identifier, and
sends tracing data to a Zipkin service instead of writing it to Cassandra, reducing the
impact of write amplification.

Infracloud has provided an alternate implementation using Jaeger, and more options
are likely to become available as the OpenTracing project has emerged to provide
standard APIs for distributed tracing frameworks.

Tuning Methodology
Once you’ve identified the root cause of performance issues related to one of your
established goals, it’s time to begin tuning performance. The suggested methodology
for tuning Cassandra performance is to change one configuration parameter at a time
and test the results.

It is important to limit the amount of configuration changes you make when tuning
so that you can clearly identify the impact of each change. You may need to repeat the
change process multiple times until you’ve reached the desired performance goal.

316 | Chapter 13: Performance Tuning

https://oreil.ly/JumKC
https://oreil.ly/bqkmV
https://oreil.ly/dnz4O
https://oreil.ly/EQCdl
https://oreil.ly/_SFiS
https://opentracing.io/

In some cases, it may be that you can get the performance back in line simply by
adding more resources such as memory or extra nodes, but make sure that you aren’t
simply masking underlying design or configuration issues. In other cases, you may
find that you can’t reach your desired goals through tuning alone, and that design
changes are needed.

With this methodology in mind, let’s look at some of the various options that you can
configure to tune your Cassandra clusters, including node configuration properties in
the cassandra.yaml and jvm.options files, as well as options that are configured on
individual tables using CQL.

Caching
Caches are used to improve responsiveness to read operations. Additional memory is
used to hold data, to minimize the number of disk reads that must be performed. As
the cache size increases, so does the number of “hits” that can be served from
memory.

The caches built into Cassandra include the key cache, row cache, chunk cache, and
counter cache. The row cache caches a configurable number of rows per partition. If
you are using a row cache for a given table, you will not need to use a key cache on it
as well.

Your caching strategy should therefore be tuned in accordance with a few factors:

• Consider your queries, and use the cache type that best fits your queries. Row
caching is only recommended for read-heavy workloads, say 95% reads.

• Consider the ratio of your heap size to your cache size, and do not allow the
cache to overwhelm your heap.

• Consider the size of your rows against the size of your keys. Typically keys will be
much smaller than entire rows.

Let’s consider some specific tuning and configuration options for each cache.

Key Cache
Cassandra’s key cache stores a map of partition keys to row index entries, facilitating
faster read access into SSTables stored on disk. You configure usage of the key cache
on a per-table basis. For example, use cqlsh to examine the caching settings on the
hotels table:

cqlsh:hotel> DESCRIBE TABLE hotels;

CREATE TABLE hotel.hotels (
 id text PRIMARY KEY,

Caching | 317

 address frozen<address>,
 name text,
 phone text,
 pois set<text>
) WITH bloom_filter_fp_chance = 0.01
 AND caching = {'keys': 'ALL', 'rows_per_partition': 'NONE'}
 ...

Because the key cache greatly increases read performance without consuming a lot of
additional memory, it is enabled by default; that is, key caching is enabled if you don’t
specify a value when creating the table. You can disable key caching for this table with
the ALTER TABLE command:

cqlsh:hotel> ALTER TABLE hotels
 WITH caching = { 'keys' : 'NONE', 'rows_per_partition' : 'NONE' };

The legal options for the keys attribute are ALL or NONE.

Some key cache behaviors can be configured via settings in the cassandra.yaml file.
The key_cache_size_in_mb setting indicates the maximum amount of heap memory
that will be devoted to the key cache, which is shared across all tables. The default
value is either 5% of the total JVM heap, or 100 MB, whichever is less.

Row Cache
With the row cache, you can cache entire rows and speed up read access for fre‐
quently accessed rows, at the cost of more memory usage.

You’ll want to configure the row cache size setting carefully, as the wrong setting can
easily lead to more performance issues than it solves. In many cases, a row cache can
yield impressive performance results for small data sets when all the rows are in
memory, only to degrade on larger data sets when the data must be read from disk.

If your table gets far more reads than writes, then configuring an overly large row
cache will needlessly consume considerable server resources. If your table has a lower
ratio of reads to writes, but has rows with lots of data in them (hundreds of columns),
then you’ll need to do some math before setting the row cache size. And unless you
have certain rows that get hit a lot and others that get hit very little, you’re not going
to see much of a boost here.

For these reasons, row caching tends to yield fewer benefits than key caching. You
may want to explore file caching features supported by your operating system as an
alternative to row caching.

As with key caching, you can configure usage of the row cache on a per-table basis.
The rows_per_partition setting specifies the number of rows that will be cached per
partition. By default, this value is set to NONE, meaning that no rows will be cached.

318 | Chapter 13: Performance Tuning

Other available options are positive integers or ALL. The following CQL statement
sets the row cache to 200 rows:

cqlsh:hotel> ALTER TABLE hotels
 WITH caching = { 'keys' : 'NONE', 'rows_per_partition' : '200' };

The implementation of the row cache is pluggable via the row_cache_class_name
property. This defaults to the off-heap cache provider implemented by the
org.apache.cassandra.OHCProvider class. The previous implementation was the
SerializingCacheProvider. Third-party solutions are available, such as the CAPI-
RowCache (CAPI stands for Coherent Accelerator Processor Interface, a Linux exten‐
sion for Flash memory access).

Chunk Cache
The chunk cache, also known as the in-process uncompressed page cache, stores
chunks of data that have been read from SSTable files and decompressed. To under‐
stand why this cache exists, let’s revisit what happens on the read path. In processing
reads, Cassandra uses its in-memory indexes in order to identify offsets into SSTable
files at which to read. It then reads chunks of data and decompresses them. The size
of each chunk is set in the compression options for each table by the
chunk_length_in_kb property, as you’ll see. Since an entire chunk is read at a time,
reading a single row from a large chunk that is accessed frequently could be quite
wasteful in terms of I/O (for file access) and CPU (for decompression). The chunk
cache stores arrays of uncompressed bytes to make reads more efficient.

The chunk cache is considered to be more helpful than the the row cache in most
cases since it is more granular; the contents of the row cache are invalidated for an
entire partition each time there is a write to the partition. The chunk cache is enabled
by default and you can configure its size using the file_cache_size_in_mb property.

The chunk cache was added to Cassandra in the 3.6 release. The implementation is
based on the Caffeine Java cache created by Ben Manes. You can find more details in
the Jira issue CASSANDRA-5863.

Counter Cache
The counter cache improves counter performance by reducing lock contention for
the most frequently accessed counters. There is no per-table option for configuration
of the counter cache.

The counter_cache_size_in_mb setting determines the maximum amount of mem‐
ory that will be devoted to the counter cache, which is shared across all tables. The
default value is either 2.5% of the total JVM heap, or 50 MB, whichever is less.

Caching | 319

https://oreil.ly/tDZ57
https://oreil.ly/tDZ57
https://oreil.ly/a6fnI
https://oreil.ly/0efCO

Saved Cache Settings
Cassandra provides the ability to periodically save caches to disk, so that they can be
read on startup as a way to quickly warm the cache. The saved cache settings are sim‐
ilar across all three cache types:

• Cache files are saved under the directory specified by the saved_caches property.
The files are written at the interval in seconds specified by the key_cache_
save_period, row_cache_save_period, and counter_cache_save_period prop‐
erties, which default to 14,000 (4 hours), 0 (disabled), and 7,200 (2 hours),
respectively.

• Caches are indexed by key values. The number of keys to save in the file are indi‐
cated by the key_cache_keys_to_save, row_cache_keys_to_save, and
counter_cache_keys_to_save properties.

Managing Caches via nodetool

You’ll want to monitor your caches to make sure they are providing
the value you expect. The output of the nodetool info command
includes information about each of Cassandra’s caches, including
the recent hit rate metrics. These metrics are also available via JMX.
If you’ve enabled tracing, you’ll be able to see caches in use, for
example, when a row is loaded from cache instead of disk.
Cassandra also provides capabilities for managing caches via node
tool:

• You can clear caches using the invalidatekeycache, invalida
terowcache, and invalidatecountercache commands.

• Use the setcachecapacity command to override the config‐
ured settings for key, row, and counter cache capacity.

• Use the setcachekeystosave command to override the con‐
figured settings for how many key, row, and counter cache ele‐
ments to save to a file.

Remember that these settings will revert to the values set in the cas‐
sandra.yaml file on a node restart.

Memtables
Cassandra uses memtables to speed up writes, holding a memtable corresponding to
each table it stores. Cassandra flushes memtables to disk as SSTables when either the
commit log threshold or memtable threshold has been reached.

320 | Chapter 13: Performance Tuning

Cassandra stores memtables either on the Java heap, off-heap (native) memory, or
both. The limits on heap and off-heap memory can be set via the properties mem
table_heap_space_in_mb and memtable_offheap_space_in_mb, respectively. By
default, Cassandra sets each of these values to one-quarter of the total heap size set in
the cassandra-env.sh file. Changing the ratio of memory used for memtables reduces
the memory available for caching and other internal Cassandra structures, so tune
carefully and in small increments. We’ll discuss the overall heap size settings in
“Memory” on page 332.

You can influence how Cassandra allocates and manages memory via the mem
table_allocation_type property. This property configures another of Cassandra’s
pluggable interfaces, selecting which implementation of the abstract class
org.apache.cassandra.utils.memory.MemtablePool is used to control the memory
used by each memtable. The default value heap_buffers causes Cassandra to allocate
memtables on the heap using the Java New I/O (NIO) API, while offheap_buffers
uses Java NIO to allocate a portion of each memtable both on and off the heap. The
offheap_objects directs Cassandra to use native memory directly.

Another element related to tuning the memtables is memtable_flush_writers. This
setting, which is 2 by default, indicates the number of threads used to write out the
memtables when it becomes necessary. If your data directories are backed by SSD,
you should increase this to the number of cores, without exceeding the maximum
value of 8. If you have a very large heap, it can improve performance to set this count
higher, as these threads are blocked during disk I/O.

You can also enable metered flushing on each table via the CQL CREATE TABLE or
ALTER TABLE command. The memtable_flush_period_in_ms option sets the interval
at which the memtable will be flushed to disk.

Setting this property results in more predictable write I/O, but will also result in more
SSTables and more frequent compactions, possibly impacting read performance. The
default value of 0 means that periodic flushing is disabled, and flushes will only occur
based on the commit log threshold or memtable threshold being reached.

Commit Logs
There are two sets of files that Cassandra writes to as part of handling update opera‐
tions: the commit log and the SSTable files. Their different purposes need to be con‐
sidered in order to understand how to treat them during configuration. You would
typically look at tuning commit log settings for write-heavy workloads.

Remember that the commit log can be thought of as short-term storage that helps
ensure that data is not lost if a node crashes or is shut down before memtables can be

Commit Logs | 321

flushed to disk. That’s because when a node is restarted, the commit log gets replayed.
In fact, that’s the only time the commit log is read; clients never read from it.

You can set the value for how large the commit log is allowed to grow before it stops
appending new writes to a file and creates a new one. This value is set with the commi
tlog_segment_size_in_mb property. By default, the value is 32 MB. Note that if you
change this property, you will also want to make sure it is set to at least twice the size
of the max_mutation_size_in_kb, which controls the largest size value Cassandra
will accept on a write.

The total space allocated to the commit log is specified by the commi

tlog_total_space_in_mb property. Setting this to a larger value means that Cassan‐
dra will need to flush tables to disk less frequently.

The commit logs are periodically removed, following a successful flush of all their
appended data to the dedicated SSTable files. For this reason, the commit logs will not
grow to anywhere near the size of the SSTable files, so the disks don’t need to be as
large; this is something to consider during hardware selection.

To increase the amount of writes that the commit log can hold, you’ll want to enable
log compression via the commitlog_compression property. The supported compres‐
sion algorithms are LZ4, Snappy, Deflate, and Zstd (added in Cassandra 4.0). Using
compression comes at the cost of additional CPU time to perform the compression.

Additional settings relate to the commit log sync operation, represented by the commi
tlog_sync element. There are two possible settings for this: periodic and batch. The
default is periodic, meaning that the server will make writes durable only at speci‐
fied intervals. The interval is specified by the commitlog_sync_period_in_ms prop‐
erty, which defaults to 10,000 (10 seconds).

In order to guarantee durability for your Cassandra cluster, you may want to examine
this setting. When the server is set to make writes durable periodically, you can
potentially lose the data that has not yet been synced to disk from the write-behind
cache.

If your commit log is set to batch, it will block until the write is synced to disk (Cas‐
sandra will not acknowledge write operations until the commit log has been com‐
pletely synced to disk). Changing this value will require taking some performance
metrics, as there is a necessary trade-off here: forcing Cassandra to write more imme‐
diately constrains its freedom to manage its own resources. If you do set
commitlog_sync to batch, you need to provide a suitable value for com

mit_log_sync_batch_window_in_ms, where ms is the number of milliseconds
between each sync effort.

322 | Chapter 13: Performance Tuning

SSTables
Unlike the commit log, Cassandra writes SSTable files to disk asynchronously. If
you’re using hard disk drives, it’s recommended that you store the datafiles and the
commit logs on separate disks for maximum performance. If you’re deploying on
solid state drives (SSDs), it is fine to use the same disk.

Cassandra, like many databases, is particularly dependent on the speed of the disk
and CPUs. It’s more important to have several processing cores than one or two very
fast ones, to take advantage of Cassandra’s highly concurrent construction. So make
sure for QA and production environments to get the fastest disks you can—prefera‐
bly SSDs. If you’re using hard disks, make sure there are at least two so that you can
store commit log files and the datafiles on separate disks, and avoid competition for
I/O time.

When reading SSTable files from disk, Cassandra sets aside a portion of 32 MB of off-
heap memory known a buffer cache (also known as a buffer pool), to help reduce data‐
base file I/O. This buffer cache is part of a larger file cache that is also used for
caching uncompressed chunks of SSTables, which you’ll see momentarily. The file
cache size can be set by the file_cache_size_in_mb property in cassandra.yaml, but
defaults to either 512 MB, or one-quarter of the Java heap, whichever is smaller. You
can also allow Cassandra to use the Java heap for file buffers once the off-heap cache
is full by setting buffer_pool_use_heap_if_exhausted to true.

By default, Cassandra compresses data contained in SSTables using the LZ4 compres‐
sion algorithm. The data is compressed in chunks according to the value of the
chunk_length_in_kb property set on each table as part of the compression options:

CREATE TABLE reservation.reservations_by_confirmation (...)
 WITH ... compression = {'chunk_length_in_kb': '16',
 'class': 'org.apache.cassandra.io.compress.LZ4Compressor'}
 ...

The remaining portion of the file cache not used for the buffer cache is used for cach‐
ing uncompressed chunks to speed up reads. The default chunk length is 16 kb in
Cassandra 4.0, which provides a good trade-off between the lesser amount of disk I/O
required to read and write compressed data versus the CPU time expended to
encrypt and decrypt each chunk. You can alter the compression options on a table,
but they will only take effect on SSTables written after the options are set. To update
existing SSTable files to use the new compression options, you’ll need to use the node
tool scrub command.

As discussed in Chapter 9, Cassandra uses SSTable index summaries and Bloom fil‐
ters to improve performance of the read path. Cassandra maintains a copy of the
Bloom filters in memory, although you may recall that the Bloom filters are stored in

SSTables | 323

files alongside the SSTable datafiles so that they don’t have to be recalculated if the
node is restarted.

The Bloom filter does not guarantee that the SSTable contains the partition, only that
it might contain it. You can set the bloom_filter_fp_chance property on each table
to control the percentage of false positives that the Bloom filter reports. This
increased accuracy comes at the cost of additional memory use as the number of
unique partition keys grows.

Index summaries are kept in memory in order to speed access into SSTable files. By
default, Cassandra allocates 5% of the Java heap to these indexes, but you can over‐
ride this via the index_summary_capacity_in_mb property in cassandra.yaml. In
order to stay within the allocated limit, Cassandra will shrink indexes associated with
tables that are read less frequently. Because read rates may change over time, Cassan‐
dra also resamples indexes from files stored on disk at the frequency specified by the
index_summary_resize_interval_in_minutes property, which defaults to 60.

Cassandra also provides a mechanism to influence the relative amount of space allo‐
cated to indexes for different tables. This is accomplished via the min_index_inter
val and max_index_interval properties, which can be set per table via the CQL
CREATE TABLE or ALTER TABLE commands. These values specify the minimum and
maximum number of index entries to store per SSTable.

Hinted Handoff
Hinted handoff is one of several mechanisms that Cassandra provides to keep data in
sync across the cluster. As you learned in Chapter 6, a coordinator node can keep a
copy of data on behalf of a node that is down for some amount of time. You can tune
hinted handoff in terms of the amount of disk space you’re willing to use to store
hints, and how quickly hints will be delivered when a node comes back online.

You can control the bandwidth utilization of hint delivery using the property hin
ted_handoff_throttle_in_kb, or at runtime via nodetool sethintedhandoff

throttlekb.

This throttling limit has a default value of 1,024, or 1 MB per second, and is used to
set an upper threshold on the bandwidth that would be required of a node receiving
hints. For example, in a cluster of three nodes, each of the two nodes delivering hints
to a third node would throttle its hint delivery to half of this value, or 512 KB per
second.

Note that configuring this throttle is a bit different than configuring other Cassandra
features, as the behavior that will be observed by a node receiving hints is entirely
based on property settings on other nodes. You’ll definitely want to use the same val‐
ues for these settings in sync across the cluster to avoid confusion.

324 | Chapter 13: Performance Tuning

In releases prior to 3.0, Cassandra stores hints in a table that is not replicated to other
nodes, but starting with the 3.0 release, Cassandra stores hints in a directory specified
by the hints_directory property, which defaults to the data/hints directory under
the Cassandra installation. You can set a cap on the amount of disk space devoted to
hints via the max_hints_file_size_in_mb property.

You can clear out any hints awaiting delivery to one or more nodes using the node
tool truncatehints command with a list of IP addresses or hostnames. Hints even‐
tually expire after the value expressed by the max_hint_window_in_ms property.

It’s also possible to enable or disable hinted handoff between specific data centers, or
entirely, as you learned in Chapter 11. While some would use this as a way to con‐
serve disk and bandwidth, in general the hinted handoff mechanism does not con‐
sume a lot of resources in comparison to the extra layer of consistency it helps to
provide, especially compared to the cost of repairing a node.

Compaction
Cassandra provides configuration options for compaction, including the resources
used by compaction on a node, and the compaction strategy to be used for each table.

Choosing the right compaction strategy for a table can certainly be a factor in
improving performance. Let’s review the available strategies and discuss when they
should be used:

SizeTieredCompactionStrategy

The SizeTieredCompactionStrategy (STCS) is the default compaction strategy,
and it should be used in most cases. This strategy groups SSTables into tiers
organized by size. When there is a sufficient number of SSTables in a tier (4 or
more by default), a compaction is run to combine them into a larger SSTable. As
the amount of data grows, more and more tiers are created. STCS performs espe‐
cially well for write-intensive tables, but less so for read-intensive tables, as the
data for a particular row may be spread across an average of 10 or so SSTables.

LeveledCompactionStrategy

The LeveledCompactionStrategy (LCS) creates SSTables of a fixed size (160 MB
by default) and groups them into levels, with each level holding 10 times as many
SSTables as the previous level. LCS guarantees that a given row appears in at most
one SSTable per level. LCS spends additional effort on I/O to minimize the num‐
ber of SSTables a row appears in; the average number of SSTables for a given row
is 1.11. This strategy should be used if there is a high ratio of reads to writes
(more than 90% reads), or predictable latency is required. LCS will tend to not
perform as well if a cluster is already I/O bound. If writes dominate reads, Cas‐
sandra may struggle to keep up.

Compaction | 325

TimeWindowCompactionStrategy

The TimeWindowCompactionStrategy (TWCS) introduced in the 3.8 release is
designed to improve read performance for time-series data. It works by grouping
SSTables in windows organized by the write time of the data. Compaction is per‐
formed within the most recent window using STCS, and TWCS inherits most of
its configuration parameters from STCS. Although processes such as hints and
repair could cause the generation of multiple SSTables within a time bucket, this
causes no issues because SSTables from one time bucket are never compacted
with an SSTable from another bucket. Because this compaction strategy is specifi‐
cally designed for time-series data, you are strongly recommended to set time to
live (TTL) on all inserted rows, avoid updating existing rows, and to prefer allow‐
ing Cassandra to age data out via TTL rather than deleting it explicitly. You
should also tune the compaction_window_unit and compaction_window_size
options so that you have a target of 20–30 windows at once.

DateTieredCompactionStrategy Deprecated

TWCS replaces the DateTieredCompactionStrategy (DTCS)
introduced in the 2.0.11 and 2.1.1 releases, which had similar goals
but also some rough edges that made it difficult to use and main‐
tain. DTCS is now considered deprecated as of the 3.8 release. New
tables should use TWCS.

Each strategy has its own specific parameters that can be tuned. Check the documen‐
tation for your release for further details.

Testing Compaction Strategies with Write Survey Mode
If you’d like to test out using a different compaction strategy for a table, you don’t
have to change it on the whole cluster in order to see how it works. Instead, you can
create a test node running in write survey mode to see how the new compaction strat‐
egy will work.

To do this, add the following options to the jvm.options file for the test node:

JVM_OPTS="$JVM_OPTS -Dcassandra.write_survey=true"
JVM_OPTS="$JVM_OPTS -Djoin_ring=false"

Once the node is up, you can then access the org.apache.cassandra.db.ColumnFami
lyStoreMBean for the table under org.apache.cassandra.db > Tables in order to
configure the compaction strategy. Set the CompactionParameters attribute, which is
a map of parameter names and values similar to what you might see in a CREATE or
ALTER TABLE command:

CREATE TABLE reservation.reservations_by_confirmation (...)
 WITH ...

326 | Chapter 13: Performance Tuning

 AND compaction = {'class': 'org.apache.cassandra.db.compaction
 .SizeTieredCompactionStrategy', 'max_threshold': '32',
 'min_threshold': '4'}
...

After this configuration change, add the node to the ring via nodetool join so that it
can start receiving writes. Writes to the test node place a minimal additional load on
the cluster and do not count toward consistency levels. You can now monitor the per‐
formance of writes to the node using nodetool tablestats and tablehistograms.

You can test the impact of new compaction strategy on reads by stopping the node,
bringing it up as a standalone machine, and then testing read performance on the
node.

Write survey mode is also useful for testing out other configuration changes or even a
new version of Cassandra.

Another per-table setting is the compaction threshold. The compaction threshold
refers to the number of SSTables that are in the queue to be compacted before a
minor compaction is actually kicked off. By default, the minimum number is 4 and
the maximum is 32. You don’t want this number to be too small, or Cassandra will
spend time fighting with clients for resources to perform many frequent, unnecessary
compactions. You also don’t want this number to be too large, or Cassandra could
spend a lot of resources performing many compactions at once, and therefore will
have fewer resources available for clients.

The compaction threshold is set per table using the CQL CREATE TABLE or ALTER
TABLE commands. However, you can inspect or override this setting for a particular
node using the nodetool getcompactionthreshold or setcompactionthreshold
commands:

$ nodetool getcompactionthreshold reservation reservations_by_confirmation
Current compaction thresholds for reservation/reservations_by_confirmation:
 min = 4, max = 32
$ nodetool setcompactionthreshold reservation reservations_by_confirmation 8 32

Compaction can be intensive in terms of I/O and CPU, so Cassandra provides the
ability to monitor the compaction process and influence when compaction occurs.

You can monitor the status of compaction on a node using the nodetool compaction
stats command, which lists the completed and total bytes for each active compac‐
tion (we’ve omitted the ID column for brevity):

$ nodetool compactionstats

pending tasks: 1
 id compaction type keyspace table completed total unit progress
 ... Compaction hotel hotels 57957241 127536780 bytes 45.44%
Active compaction remaining time : 0h00m12s

Compaction | 327

If you see that the pending compactions are starting to stack up, you can use the node
tool commands getcompactionthroughput and setcompactionthroughput to check
and set the throttle that Cassandra applies to compactions across the cluster. This
corresponds to the property compaction_throughput_mb_per_sec in the cassan‐
dra.yaml file. Setting this value to 0 disables throttling entirely, but the default value
of 16 MBps is sufficient for most cases that are not write-intensive.

If this does not fix the issue, you can increase the number of threads dedicated to
compaction by setting the concurrent_compactors property in the cassandra.yaml
file, or at runtime via the CompactionManagerMBean. This property defaults to the
minimum of the number of disks and number of cores, with a minimum of 2 and a
maximum of 8.

Although it is not very common, a large compaction could negatively impact the per‐
formance of the cluster. You can use the nodetool stop command to stop all active
compactions on a node. You can also identify a specific compaction to stop by ID,
where the ID is obtained from the compactionstats output. Cassandra will resched‐
ule any stopped compactions to run later. By default, compaction is run on all keyspa‐
ces and tables, but you can use the nodetool disableautocompaction and
enableautocompaction commands for more selective control.

You can force a major compaction via the nodetool compact command. Before kick‐
ing off a major compaction manually, remember that this is an expensive operation.
The behavior of nodetool compact during compaction varies depending on the com‐
paction strategy in use. If using the SizeTieredCompactionStrategy, it’s recom‐
mended to use the -s option to request that Cassandra create multiple, smaller
SSTable files rather than a single, large SSTable file. If your concern is specifically
related to cleanup of deleted data, you may use nodetool garbagecollect as an
alternative to a major compaction.

The nodetool compactionhistory command prints statistics about completed com‐
pactions, including the size of data before and after compaction, and details for each
partition about the merging of rows from existing SSTables. The output is pretty ver‐
bose, so we’ve omitted it here.

Concurrency and Threading
Cassandra differs from many data stores in that it offers much faster write perfor‐
mance than read performance. There are two settings related to how many threads
can perform read and write operations: concurrent_reads and concurrent_writes.
In general, the defaults provided by Cassandra out of the box are very good.

The concurrent_reads setting determines how many simultaneous read requests the
node can service. This defaults to 32, but should be set to the number of drives used

328 | Chapter 13: Performance Tuning

for data storage times 16. This is because when your data sets are larger than available
memory, the read operation is I/O bound.

The concurrent_writes setting behaves somewhat differently. This should correlate
to the number of clients that will write concurrently to the server. If Cassandra is
backing a web application server, you can tune this setting from its default of 32 to
match the number of threads the application server has available to connect to Cas‐
sandra. It is common in Java application servers to prefer database connection pools
no larger than 20 or 30, but if you’re using several application servers in a cluster,
you’ll need to factor that in as well.

Two additional settings—concurrent_counter_writes and concurrent_material
ized_view_writes—are available for tuning special forms of writes. Because counter
and materialized view writes both involve a read before write, it is best to set this to
the lower of concurrent_reads and concurrent_writes.

There are several other properties in the cassandra.yaml file that control the number
of threads allocated to the thread pools Cassandra allocates for performing various
tasks. You’ve seen some of these already, but here is a summary:

max_hints_delivery_threads

Maximum number of threads devoted to hint delivery

memtable_flush_writers

Number of threads devoted to flushing memtables to disk

concurrent_compactors

Number of threads devoted to running compaction

native_transport_max_threads

Maximum number of threads devoted to processing incoming CQL requests

Note that some of these properties allow Cassandra to dynamically allocate and deal-
locate threads up to a maximum value, while others specify a static number of
threads. Tuning these properties up or down affects how Cassandra uses its CPU time
and how much I/O capacity it can devote to various activities.

Networking and Timeouts
As Cassandra is a distributed system, it provides mechanisms for dealing with net‐
work and node issues including retries, timeouts, throttling, and message coalescing.
We’ve already discussed a couple of the ways Cassandra implements retry logic, such
as the RetryPolicy in the DataStax client drivers, and speculative read execution in
drivers and nodes.

Networking and Timeouts | 329

Now let’s take a look at the timeout mechanisms that Cassandra provides to help it
avoid hanging indefinitely waiting for other nodes to respond. The timeout proper‐
ties listed in Table 13-1 are set in the cassandra.yaml file.

Table 13-1. Cassandra node timeouts

Property name Default value Description

read_request_timeout_in_ms 5000 (5 seconds) How long the coordinator waits for read operations to
complete

range_request_timeout_in_ms 10000 (10 seconds) How long the coordinator should wait for range reads
to complete

write_request_timeout_in_ms 2000 (2 seconds) How long the coordinator should wait for writes to
complete

counter_write_request_time
out_in_ms

5000 (5 seconds) How long the coordinator should wait for counter
writes to complete

cas_contention_timeout_in_ms 1000 (1 second) How long a coordinator should continue to retry a
lightweight transaction

truncate_request_timeout_in_ms 60000 (1 minute) How long the coordinator should wait for truncates to
complete (including snapshot)

streaming_socket_timeout_in_ms 3600000 (1 hour) How long a node waits for streaming to complete

request_timeout_in_ms 10000 (10 seconds) The default timeout for other, miscellaneous operations

The values for these timeouts are generally acceptable, but you may need to adjust
them slightly for your network environment.

Another property related to timeouts is cross_node_timeout, which defaults to
false. If you have NTP configured in your environment, consider enabling this so
that nodes can more accurately estimate when the coordinator has timed out on long-
running requests, and release resources more quickly.

Cassandra also provides several properties that allow you to throttle the amount of
network bandwidth it will use for various operations. Tuning these allows you to pre‐
vent Cassandra from swamping your network, at the cost of longer time to complete
these tasks. For example, the stream_throughput_outbound_megabits_per_sec and
inter_dc_stream_throughput_outbound_megabits_per_sec properties specify a
per-thread throttle on streaming file transfers to other nodes in the local and remote
data centers, respectively.

The throttles for hinted handoff and batchlog replay work slightly differently. The
values specified by hinted_handoff_throttle_in_kb and batchlog_replay_throt
tle_in_kb are considered maximum throughput values for the cluster and are there‐
fore spread proportionally across nodes according to the formula:

Tx =
Tt

Nn − 1

330 | Chapter 13: Performance Tuning

That is, the throughput of a node x (Tx) is equal to the total throughput (Tt) divided
by one less than the number of nodes in the cluster (Nn).

There are several properties that you can use to limit traffic to the native CQL port on
each node. These may be useful in situations where you don’t have direct control over
the client applications of your cluster. The default maximum frame size specified by
the native_transport_max_frame_size_in_mb property is 256. Frame requests
larger than this will be rejected by the node.

The node can also limit the maximum number of simultaneous client connections,
via the native_transport_max_concurrent_connections property, but the default is
−1 (unlimited). If you configure this value, you’ll want to make sure it makes sense in
light of the concurrent_readers and concurrent_writers properties.

To limit the number of simultaneous connections from a single source IP address,
configure the native_transport_max_concurrent_connections_per_ip property,
which defaults to −1 (unlimited).

JVM Settings
Cassandra allows you to configure a variety of options for how the server JVM should
start up, how much Java memory should be allocated, and so forth. In this section,
you’ll learn how to tune the startup.

If you’re using Windows, the startup script is called cassandra.bat, and on Unix sys‐
tems it’s cassandra.sh. You can start the server by simply executing this file, which
detects the selected JVM and configures the Java classpath and paths for loading
native libraries. The startup script sources (includes) additional files in the conf direc‐
tory that allow you to configure a variety of JVM settings.

The cassandra-env.sh (cassandra-env.ps1 on Windows) is primarily concerned with
configuring JMX and Java heap options.

The Cassandra 3.0 release began a practice of moving JVM settings related to heap
size and garbage collection to a dedicated settings file in the conf directory called
jvm.options, as these are the settings that are tuned most frequently. In the 3.0 release,
the jvm.options file is included (sourced) by the cassandra-env.sh file.

Since the Cassandra 4.0 release is intended to run against either JDK 8 or JDK 11,
multiple options files are provided:

• The conf/jvm-server.options file contains settings that apply to running Cassandra
regardless of your selected JVM.

• The conf/jvm8-server.options and conf/jvm11-server.options files contain settings
that apply to running Cassandra using JDK 8 or JDK 11, respectively.

JVM Settings | 331

• The conf/jvm-client.options, conf/jvm8-client.options, and conf/jvm11-
client.options files contain JVM settings for running clients such as nodetool and
cqlsh, following the same conventions as the server options.

Memory
By default, Cassandra uses the following algorithm to set the JVM heap size: if the
machine has less than 1 GB of RAM, the heap is set to 50% of RAM. If the machine
has more than 4 GB of RAM, the heap is set to 25% of RAM, with a cap of 8 GB. To
tune the minimum and maximum heap size yourself, use the -Xms and -Xmx flags.
These should be set to the same value to allow the entire heap to be locked in mem‐
ory and not swapped out by the OS. It is not recommended to set the heap larger than
12 GB if you are using the Concurrent Mark Sweep (CMS) garbage collector, as heap
sizes larger than this value tend to lead to longer garbage collection pauses.

When performance tuning, it’s a good idea to set only the heap min and max options,
and nothing else at first. Only after real-world usage in your environment and some
performance benchmarking with the aid of heap analysis tools and observation of
your specific application’s behavior should you dive into tuning the more advanced
JVM settings. If you tune your JVM options and see some success, don’t get too exci‐
ted. You need to test under real-world conditions.

In general, you’ll probably want to make sure that you’ve instructed the heap to dump
its state if it hits an out-of-memory error, which is the default in cassandra-env.sh, set
by the -XX:+HeapDumpOnOutOfMemory option. This is just good practice if you start
experiencing out-of-memory errors.

Garbage Collection
Garbage collection (GC) is the process of reclaiming heap memory in the JVM that
has been allocated for but is no longer used. Garbage collection has traditionally been
a focus of performance tuning efforts for Java applications since it is an administra‐
tive process that consumes processing resources, and GC pauses can negatively affect
latencies of remote calls in networked applications like Cassandra. The good news is
that there is a lot of innovation in the area of Java garbage collection. Let’s look at the
available options based on the JVM you’re using.

Default configuration (JDK 8 or JDK 11)
The default configuration for the 3.x and 4.0 releases uses two different garbage col‐
lection algorithms that work on different parts of the heap. In this approach, the Java
heap is broadly divided into two object spaces: young and old. The young space is
subdivided into one for new object allocation (called “eden space”) and another for
new objects that are still in use (the “survivor space”).

332 | Chapter 13: Performance Tuning

Cassandra uses the parallel copying collector in the young generation; this is set via
the -XX:+UseParNewGC option. Older objects still have some reference, and have
therefore survived a few garbage collections, so the survivor ratio is the ratio of eden
space to survivor space in the young object part of the heap. Increasing the ratio
makes sense for applications with lots of new object creation and low object preserva‐
tion; decreasing it makes sense for applications with longer-living objects. Cassandra
sets this value to 8 via the -XX:SurvivorRatio option, meaning that the ratio of eden
to survivor space is 1:8 (each survivor space will be 1/8 the size of eden). This is fairly
low, because the objects are living longer in the memtables.

Every Java object has an age field in its header, indicating how many times it has been
copied within the young generation space. Objects are copied into a new space when
they survive a young generation garbage collection, and this copying has a cost.
Because long-living objects may be copied many times, tuning this value can improve
performance. By default, Cassandra has this value set at 1 via the -

XX:MaxTenuringThreshold option. Set it to 0 to immediately move an object that sur‐
vives a young generation collection to the old generation. Tune the survivor ratio
together along with the tenuring threshold.

Modern Cassandra releases use the Concurrent Mark Sweep (CMS) garbage collector
for the old generation; this is set via the -XX:+UseConcMarkSweepGC option. This set‐
ting uses more RAM and CPU power to do frequent garbage collections while the
application is running, in order to keep the GC pause time to a minimum. When
using this strategy, it’s recommended to set the heap min and max values to the same
value, in order to prevent the JVM from having to spend a lot of time growing the
heap initially.

Garbage-First garbage collector (JDK 8 or JDK 11)
The Garbage-First garbage collector (also known as G1GC) was introduced in Java 7.
It was intended to become the long-term replacement for the CMS garbage collec‐
tion, especially on multiprocessor machines with more memory.

G1GC divides the heap into multiple, equal-size regions and allocates these to eden,
survivor, and old generations dynamically, so that each generation is a logical collec‐
tion of regions that need not be consecutive regions in memory. This approach ena‐
bles garbage collection to run continually and require fewer of the “stop the world”
pauses that characterize traditional garbage collectors.

G1GC generally requires fewer tuning decisions; the intended usage is that you need
only define the min and max heap size and a pause time goal. A lower pause time will
cause GC to occur more frequently.

There has been considerable discussion in the Cassandra community about switching
to G1GC as the default. For example, G1GC was originally the default for the

JVM Settings | 333

Cassandra 3.0 release, but was backed out because it did not perform as well as the
CMS for heap sizes smaller than 8 GB. The emerging consensus is that the G1GC per‐
forms well without tuning, but the default configuration of ParNew/CMS can result
in shorter pauses when properly tuned.

If you’d like to experiment with using G1GC and a larger heap size on a Cassandra 2.2
or later release, the settings are readily available in the jvm.options file (or the
cassandra-env.sh file for releases prior to 3.0).

Z Garbage Collector (JDK 11 and later)
The Z Garbage Collector (ZGC) was developed at Oracle and introduced in JDK 11.
Its primary goals are to limit pause times to 10 ms or less, and to scale even to heaps
in the multiple terabyte range. ZGC represents a new approach that does not rely on
young and old generations. Instead, it divides the heap into regions and copies data
into spare regions in order to perform collections in parallel while your application
continues to execute. For this reason, ZGC is referred to as a concurrent compactor.
ZGC does require that you maintain some headroom in your Java heap in order to
support the copied data.

ZGC was originally only supported on Linux platforms, but Windows and macOS
support is coming in JDK 14. To give ZGC a try on Cassandra 3 or 4, we recommend
using the settings on the ZGC wiki page.

Shenandoah Garbage Collector (JDK12)
Shenandoah Garbage Collector (SGC) is a new garbage collector developed by Red‐
Hat and included for the first time in JDK 12 (although backported versions are avail‐
able for JDK 8 and JDK 11). SGC also uses a region-based approach similar to ZGC,
but works better than ZGC on smaller heap sizes, especially when there is less head‐
room on the heap. While it has similar overall latency to ZGC, with most pauses
under 10 ms, SGC can have worse tail latencies.

SGC is still considered experimental, but if you’d like to experiment, you can read
more about how to configure it on the Shenandoah wiki.

To get more insight on garbage collection activity in your Cassandra nodes, there are
a couple of options. The gc_warn_threshold_in_ms setting in the cassandra.yaml file
determines the pause length that will cause Cassandra to generate log messages at the
WARN logging level. This value defaults to 1,000 ms (1 second). You can also instruct
the JVM to print garbage collection details by setting options in the cassandra-env.sh
or jvm.options files.

334 | Chapter 13: Performance Tuning

https://oreil.ly/KqSTi
https://oreil.ly/S5zp0

Operating System Tuning

If you’re somewhat new to Linux systems and you want to run Cas‐
sandra on Linux (which is recommended), you may want to check
out Amy Tobey’s blog post on tuning Cassandra. This walks
through several Linux performance monitoring tools to help you
understand the performance of your underlying platform so that
you can troubleshoot in the right place. Although the post refer‐
ences Cassandra 2.1, the advice it contains is broadly applicable.
The DataStax documentation contains recommended Linux OS
settings, and the Cassandra documentation also contain advice on
using lower-level JVM and OS tools to tune performance.

Tuning Cassandra Clients
While the majority of this chapter has focused on tuning performance from the
server side, there are options available to you on the client side as well. Let’s consider
performance-related features of the DataStax Java Driver that you should be aware of:

Prepared statements
Make sure that you’re using PreparedStatements for queries that are repeated
multiple times in order to take advantage of the bandwidth savings and security
benefits of only transmitting parameter values rather than full CQL statements.

Compression
Another way to speed communications is to compress messages. By default, the
Java driver does not use compression for communications with Cassandra nodes,
but you can select to use either the LZ4 or Snappy algorithms by setting configu‐
ration options in the advanced.protocol.compression namespace. The trade-
off you are making by transmitting fewer bytes over the network is the additional
CPU effort for compression and decompression on each end. You might consider
enabling compression if your queries involve a nontrivial amount of data.

Request tracking
The Java driver provides a RequestTracker interface. You can specify an imple‐
mentation of your own or use the provided RequestLogger implementation by
configuring the properties in the datastax-java-driver.advanced.request-
tracker namespace. The RequestLogger tracks every query your application
executes and has options to enable logging for successful, failed, and slow quer‐
ies. Use the slow query logger to identify queries that are not within your defined
performance SLAs.

Request tracing
As we discussed in “Tracing” on page 314, you can enable tracing on individual
queries in order to obtain detailed information on the interactions between
nodes. This is useful for debugging your slow queries to see what is happening.

JVM Settings | 335

https://oreil.ly/hvENt
https://oreil.ly/cl33M
https://oreil.ly/-XkFd
https://oreil.ly/znS_i

Request throttling
If you’re concerned about a client flooding the cluster with a large number of
requests, you can use the Java driver’s request throttling feature to limit the rate
of queries to a value you define using configuration options in the
advanced.throttler namespace. Queries in excess of the rate are queued until
the utilization is back within range. This behavior is mostly transparent from the
client perspective, but it is possible to receive a RequestThrottlingException on
executing a statement; this indicates that the CqlSession is overloaded and
unable to queue the request.

For more details on these and other performance-related tips, check out the DataStax
Java Driver Performance page. Many of these features are available from other drivers
as well; check the documentation of the driver you’re using for more information.

Summary
In this chapter, you learned how to manage Cassandra performance and about the
settings available in Cassandra to aid in performance tuning, including caching set‐
tings, memory settings, and hardware concerns. You also learned a methodology for
planning, monitoring, and debugging performance and how to use stress tools to
effectively simulate operational conditions on your clusters. Next, let’s have a look at
how to secure your Cassandra clusters.

336 | Chapter 13: Performance Tuning

https://oreil.ly/KTTXz
https://oreil.ly/OCeuz
https://oreil.ly/OCeuz

CHAPTER 14

Security

Making data accessible has been one of the key tenets of the Big Data movement, ena‐
bling huge strides in data analytics and bringing tangible benefits to business, aca‐
demia, and the general public. At the same time, this data accessibility is held in
tension with growing security and privacy demands. Internet-scale systems are
exposed to an ever-changing collection of attacks, most of which target the data they
hold. We’re all aware of high-profile breaches resulting in significant losses of data,
including personal data, payment information, military intelligence, and corporate
trade secrets. And these are just the breaches that have made the news.

One result of this heightened threat environment has been increased regulatory and
compliance regimens in many regions and industries:

• The European Union’s General Data Protection Regulation (GDPR), which took
effect in 2018, specifies data protections and privacy for all EU citizens, including
limitations on transfer of personal data outside the EU. The California Consumer
Privacy Act (CCPA), effective January 2020, is a similar provision reflecting
trends toward data privacy in the United States.

• The US Health Insurance Portability and Accountability Act (HIPAA) of 1996
prescribes controls for the protection and handling of individual health
information.

• The Payment Card Industry Data Security Standard (PCI DSS), first released in
2006, is an industry-defined set of standards for the secure handling of payment
card data.

• The US Sarbanes-Oxley Act of 2002 regulates corporate auditing and reporting,
including data retention, protection, and auditing.

337

These are just a few examples of regulatory and compliance standards. Even if none
of these examples apply directly to your application, chances are there are regulatory
guidelines of some kind that impact your system.

All of this publicity and regulatory rigor has resulted in a much increased level of vis‐
ibility on enterprise application security in general, and more pertinently for our dis‐
cussions, on NoSQL database security. Although a database is by definition only a
part of an application, it certainly forms a vital part of the attack surface of the appli‐
cation, because it serves as the repository of the application’s data.

Is Security a Weakness of NoSQL?

A 2012 Information Week report took the NoSQL community to
task for what the authors argue is a sense of complacency, arguing
that NoSQL databases fail to prioritize security. While the security
of many NoSQL technologies, including Cassandra, has improved
significantly since then, the paper serves as a healthy reminder of
our responsibilities and the need for continued vigilance.

Fortunately, the Cassandra community has demonstrated a commitment to continu‐
ous improvement in security. Cassandra’s security features include authentication,
role-based authorization, encryption, and audit logging, as shown in Figure 14-1.

Figure 14-1. Cassandra’s security features

338 | Chapter 14: Security

https://oreil.ly/Oks4d

In this chapter, we’ll explore these security features and how to access them via cqlsh
and other clients, with some thoughts along the way for how Cassandra fits into a
broader application security strategy that protects against attack vectors such as
unauthorized access and eavesdropping.

Authentication and Authorization
Let’s take a look at Cassandra’s authentication and authorization features.

Password Authenticator
By default, Cassandra allows any client on your network to connect to your cluster.
This does not mean that no security is set up out of the box, but rather that Cassandra
is configured to use an authentication mechanism that allows all clients, without
requiring that they provide credentials. The security mechanism is pluggable, which
means that you can easily swap out one authentication method for another, or write
your own.

The authenticator that’s plugged in by default is the org.apache.cassan

dra.auth.AllowAllAuthenticator. If you want to force clients to provide creden‐
tials, another alternative ships with Cassandra, the
org.apache.cassandra.auth.PasswordAuthenticator. In this section, you’ll learn
how to use this second authenticator.

Configuring the authenticator
First, shut down your cluster so that you can change the security configuration. Open
the cassandra.yaml file and search for “authenticator.” You’ll find the following line:

authenticator: AllowAllAuthenticator

Change this line to use the PasswordAuthenticator:

authenticator: PasswordAuthenticator

You’ll want to repeat this action on each node in the cluster. If you’re using Cassandra
2.2 or later, you’ll see a note in the cassandra.yaml file indicating that the CassandraR
oleManager must be used if the PasswordAuthenticator is used. The CassandraRole
Manager is part of Cassandra’s authorization capability, which we’ll discuss in more
depth momentarily.

Additional authentication providers
You can provide your own method of authenticating to Cassandra, such as a Kerberos
ticket, or store passwords in a different location, such as an LDAP directory. In order
to create your own authentication scheme, simply implement the IAuthenticator

Authentication and Authorization | 339

interface. DataStax Enterprise Edition provides additional authentication integra‐
tions, and Instaclustr has made its LDAP and Kerberos authenticators open source.

Cassandra also supports pluggable authentication between nodes via the IInterno
deAuthenticator interface. The default implementation AllowAllInternodeAuthen
ticator performs no authentication, but you are free to implement your own
authenticator as a way to protect a node from making connections to untrusted
nodes.

Adding users
Now, save the cassandra.yaml file, restart your node or cluster, and try logging in with
cqlsh. Immediately you run into a problem:

$ bin/cqlsh
Connection error: ('Unable to connect to any servers',
 {'127.0.0.1': AuthenticationFailed('Remote end requires
 authentication.',)})

Prior versions of Cassandra might allow login, but would not allow any access. Ver‐
sions of Cassandra 2.2 and later require a password even to log in. Cassandra comes
with a default user known as cassandra, with “cassandra” as the password. Let’s try
logging in again with these credentials:

$ bin/cqlsh -u cassandra -p cassandra
Connected to reservation_cluster at 127.0.0.1:9042.
[cqlsh 6.0.0 | Cassandra 4.0.0 | CQL spec 3.4.5 | Native protocol v5]
Use HELP for help.
cassandra@cqlsh>

Once you’ve logged in successfully, you’ll see that the prompt indicates that you are
logged in as the user cassandra. One of the first things you’ll want to do to begin
securing your installation is to change the password for this very important user.
We’ve used a random password generator here as an example:

cassandra@cqlsh> ALTER USER cassandra WITH PASSWORD 'Kxl0*nGpB6';

Make sure to store the cassandra user’s password in a secure location.

Don’t Forget to Clear cqlsh History

Remember that cqlsh stores a history of your commands under
your home directory at .cassandra/cqlsh_history, so the full clear-
text password you provide is preserved there. You’ll want to
remove the command from the history after setting a password.

For a microservice-style application, as we’ve used for the examples in this book, you
might want to create a user account specifically to give the service access to a single

340 | Chapter 14: Security

keyspace. To create this new user, you’ll start by specifying a username and password.
The password is optional, but of course recommended:

cassandra@cqlsh> CREATE USER reservation_service WITH PASSWORD 'i6XJsj!k#9';

The CREATE USER command also supports the IF NOT EXISTS syntax to avoid errors
on multiple attempts to create a user. Now, check to see that you’ve created the user
successfully by using the LIST USERS command:

cassandra@cqlsh> LIST USERS ;

 name | super | datacenters
---------------------+-------+-------------
 cassandra | True | ALL
 reservation_service | False | ALL
(2 rows)

You’ll note that the user cassandra is listed as being a superuser. The superuser desig‐
nates the ability to perform all supported actions. Only a superuser can create other
users. You’ve already changed the password for the built-in user cassandra. You may
also want to create another superuser and remove the cassandra account’s superuser
status for additional security. This is considered a best practice for securing
Cassandra.

Configuring Automatic Login

To avoid having to enter a username and password on every login
to cqlsh, create a file in your home directory called .cqlshrc. You
can enter login credentials with lines like this:

; Sample ~/.cqlshrc file.
[authentication] username = reservation_service
 password = i6XJsj!k#9

Obviously, you’ll want to make sure this file is secure so that only
authorized users (such as your account) have access to the
password.

Other operations on users include the ALTER USER command, which allows you to
change a user’s password or superuser status, as well as the DROP USER command,
which you use to delete a user. A nonsuperuser can alter their own password using
the ALTER USER command, but all other operations require superuser status.

You can use the LOGIN command to switch users within cqlsh without restart:

cassandra@cqlsh> login reservation_service 'i6XJsj!k#9'
reservation_service@cqlsh>

You may choose to omit the password from the command, in which case cqlsh will
prompt you to enter the password. It’s preferable to enter passwords at the shell

Authentication and Authorization | 341

prompt, rather than the command line, as cqlsh saves all of your commands to a file
called .cassandra/cqlsh_history under your home directory, including any passwords
you include on the command line when using the LOGIN command.

Authenticating via the DataStax Java Driver

Of course, your applications don’t use cqlsh to access Cassandra, so it will be helpful
to learn how to authenticate to the client using the DataStax client drivers. Building
on the Reservation Service from Chapter 8, use the CqlSessionBuilder.withCreden
tials() operation to provide the username and password when you construct your
Cluster instance:

CqlSession = CqlSession.builder().addContactPoint("127.0.0.1").
 withAuthCredentials("reservation_service", "i6XJsj!k#9").
 build();

The login syntax is quite similar for other DataStax drivers. This is a simple example
that hardcodes the login credentials, but you could just as easily use values provided
by an application user or stored in a secure configuration file:

datastax-java-driver {
 advanced.auth-provider {
 username = reservation_service
 password = i6XJsj!k#9
}

If you’ve configured an authenticator on your nodes other than the default, you’ll also
need to configure a compatible authenticator in your clients. Client authentication
providers implement the com.datastax.oss.driver.api.core.auth.AuthProvider
interface. The default implementation is the PlainTextAuthProvider class, an
instance of which is registered when you call the CqlSessionBuilder.withCreden
tials() operation. You can override the provider when constructing your Cluster
object by calling the CqlSessionBuilder.withAuthProvider() operation.

Using CassandraAuthorizer
It is certainly possible to only use authentication, although in most cases you’ll want
to make use of Cassandra’s authorization capabilities as well. Cassandra’s out-of-the-
box configuration authorizes all clients to access all keyspaces and tables in your clus‐
ter. As with authentication, the authorization mechanism is pluggable.

The authorizer that’s plugged in by default is the org.apache.cassandra.auth.Allow
AllAuthorizer. To enable Cassandra’s role-based access control, you’ll need to con‐
figure the org.apache.cassandra.auth.CassandraAuthorizer.

Again, you’ll shut down the cluster to change the authorizer. In the cassandra.yaml
file, search for “authorizer.” You’ll find the line:

342 | Chapter 14: Security

authorizer: AllowAllAuthorizer

and change it to:

authorizer: CassandraAuthorizer

Once you restart the cluster, you can log in to cqlsh again as your regular user to see
what you can access, making use of the reservation data stored in your cluster in pre‐
vious chapters:

$ cqlsh -u reservation_service –p 'i6XJsj!k#9'
...
reservation_service@cqlsh> DESCRIBE KEYSPACES;
system_schema system system_traces system_virtual_schema
system_auth system_distributed reservation system_views

reservation_service@cqlsh> USE reservation;
reservation_service@cqlsh:reservation> DESCRIBE TABLES;

reservations_by_confirmation reservations_by_hotel_date
reservations_by_guest

reservation_service@cqlsh:reservation> SELECT * FROM
 reservations_by_confirmation;
Unauthorized: Error from server: code=2100 [Unauthorized]
 message="User reservation_service has no SELECT permission on <table
 reservation.reservations_by_confirmation> or any of its parents"

As you can see, you are able to navigate through cqlsh to view the names of the vari‐
ous keyspaces and tables, but once you attempt to access data, you are denied access.

To fix this, you’ll need to switch back into a superuser role and grant your user some
permissions. For example, let’s allow the user to access tables in the reservations key‐
space:

cassandra@cqlsh> GRANT SELECT ON KEYSPACE reservation TO reservation_service;
cassandra@cqlsh> GRANT MODIFY ON KEYSPACE reservation TO reservation_service;

This allows your Reservation Service account to read and write data, but no other
operations. You could also have granted SELECT ON TABLE or MODIFY ON TABLE per‐
missions to allow access to a specific table. Now, if you log back in as your regular
user and run the SELECT command again, you’ll see the data you stored previously.

Authentication and Authorization | 343

Getting Help with Permissions

The cqlsh commands HELP GRANT and HELP PERMISSIONS provide
additional information on configuring permissions such as:

CREATE, ALTER, DROP
These permissions allow users to CREATE, ALTER, and DROP key‐
spaces, tables, functions and roles.

SELECT
These permissions allow the ability to SELECT data from tables
and keyspaces, as well as the ability to call get() operations on
MBeans.

MODIFY
These permissions group the INSERT, UPDATE, DELETE and TRUN
CATE commands for modifying tables, as well as the ability to
call set() operations on MBeans.

AUTHORIZE
These permissions deal with the ability to GRANT and REVOKE
other permissions. These are commonly used to create users
and roles that have administrative privileges over some or all
keyspaces, but not the ability to manage access of other
accounts.

DESCRIBE
Since it is possible for the database schema itself to contain
sensitive information, these permissions restrict access to the
various CQL DESCRIBE operations.

EXECUTE
These permissions control the ability to execute functions and
MBean actions.

The Cassandra Query Language specification contains a detailed
listing of grantable permissions by CQL command and the
resources to which they apply, which include keyspaces, tables,
MBeans, functions (introduced in Chapter 15), and roles (which
we discuss next).

Role-Based Access Control
In a large Cassandra cluster, there might be a lot of different keyspaces and tables,
with many different potential users. It would be difficult to keep track of the permis‐
sions assigned to them all. While it’s tempting to share login information with multi‐
ple support staff, there is a better way.

344 | Chapter 14: Security

https://oreil.ly/lEmK6

Starting with the 2.2 release, Cassandra provides role-based access control (RBAC).
This allows you to create roles and assign permissions to these roles. Roles can be
granted to individual users in any combination. Roles can themselves contain other
roles.

It’s a good practice to create separate roles in order to keep permissions to the mini‐
mum required for each user. For example, you might also wish to create a reserva
tion_maintenance role that has permissions to modify the reservation keyspace
and its tables, but not all of the power of the cassandra administrator role:

cassandra@cqlsh> CREATE ROLE reservation_maintenance;
cassandra@cqlsh> GRANT ALL ON KEYSPACE reservation TO reservation_maintenance;

You’ve created a simple role here to which you can’t log in to directly. You can also
create roles that have superuser privileges, and roles that support login and take a
password. Now you could apply this role to some user account jeff:

cassandra@cqlsh> GRANT reservation_maintenance TO jeff;

Roles are additive in Cassandra, meaning that if any of the roles granted to a user
have a specific permission granted, then that permission is granted to the user.

4.0 Feature: Network Authorization
Beginning with the 4.0 release, you can restrict roles to only have access to named
data centers. Cassandra provides the INetworkAuthorizer interface to allow plugga‐
ble implementations, and two implementations, the AllowAllNetworkAuthorizer
(which does not restrict role access), and the CassandraNetworkAuthorizer.

To enable network authorization, you’ll want to edit the cassandra.yaml file to set the
network_authorizer option:

network_authorizer: CassandraNetworkAuthorizer

Then, you can use the ACCESS TO DATACENTERS syntax when creating or altering users
or roles to specify data centers they may access:

CREATE ROLE reservation_maintenance WITH ACCESS
 TO DATACENTERS {'DC1', 'DC2'};

The CassandraNetworkAuthorizer stores permissions in the system_auth.net
work_permissions table, which underlines the importance of setting the replication
strategy appropriately on the system_auth keyspace, so that all nodes in the cluster
will be aware of the network authorization configuration.

Behind the scenes, Cassandra stores users and roles in the system_auth keyspace. If
you’ve configured authorization for your cluster, only administrative users can access
this keyspace, so let’s examine its contents in cqlsh using the administrator login:

Authentication and Authorization | 345

cassandra@cqlsh> DESCRIBE KEYSPACE system_auth

CREATE KEYSPACE system_auth WITH replication = {'class': 'SimpleStrategy',
 'replication_factor': '1'} AND durable_writes = true;

...

We’ve truncated the output, but if you run this command, you’ll see the tables that
store the roles, their permissions, and role assignments. There is actually no separate
concept of a user at the database level—Cassandra uses the role concept to track both
users and roles.

Changing the system_auth Replication Factor

The system_auth keyspace is configured out of the box to use the
SimpleStrategy with a replication factor of one.
This means that by default, any users, roles, and permissions you
configure will not be distributed across the cluster until you recon‐
figure the replication strategy of the system_auth keyspace to
match your cluster topology and run repair on the system_auth
keyspace.

Encryption
Protecting user privacy is an important aspect of many systems, especially those that
handle health, financial, and other personal data. Typically you protect privacy by
encrypting data, so that if the data is intercepted, it is unusable to an attacker who
does not have the encryption key. Data can be encrypted as it moves around the pub‐
lic internet and within internal systems, also known as data in motion, or it can be
encrypted on systems where it is persisted (known as data at rest).

Starting with the 2.2.4 release, Cassandra provides the option to secure data in
motion via encryption between clients and servers (nodes), and encryption between
nodes using Secure Sockets Layer (SSL). As of Cassandra 4.0, encryption of datafiles
(data at rest) is not supported; however, it is offered by DataStax Enterprise releases
of Cassandra and can also be achieved by using storage options that support full-disk
encryption, such as encrypted EBS volumes on AWS.

346 | Chapter 14: Security

Datafile Encryption Roadmap

There are several Cassandra Jira requests targeted for the 3.X
release series that provide encryption features. For example, the
following were added in the 3.4 release:

CASSANDRA-11040
Encryption of hints

CASSANDRA-6018
Encryption of commit logs

See also CASSANDRA-9633 on encryption of SSTables, and
CASSANDRA-7922, which serves as an umbrella ticket for file-
level encryption requests.

Before you start configuring nodes to enable encryption, there is some preparation
work to do to create security certificates that are a key part of the machinery.

SSL, TLS, and Certificates
Cassandra uses Transport Layer Security (TLS) for encrypting data in motion. TLS is
often referenced by the name of its predecessor, Secure Sockets Layer (SSL). TLS is a
cryptographic protocol for securing communications between computers to prevent
eavesdropping and tampering. More specifically, TLS makes use of public key cryp‐
tography (also known as asymmetric cryptography), in which a pair of keys is used to
encrypt and decrypt messages between two endpoints: a client and a server.

Prior to establishing a connection, each endpoint must possess a certificate contain‐
ing a public and private key pair. Public keys are exchanged with communication
partners, while private keys are not shared with anyone.

To establish a connection, the client sends a request to the server indicating the
cipher suites it supports. The server selects a cipher suite from the list that it also sup‐
ports and replies with a certificate that contains its public key. The client validates the
server’s public key. The server may also require that the client provide its public key
in order to perform two-way validation. The client uses the server’s public key to
encrypt a message to the server in order to negotiate a session key. The session key is
a symmetric key generated by the selected cipher suite that is used for subsequent
communications.

For most applications of public key cryptography, the certificates are obtained from a
certificate authority, and this is the recommended practice for production Cassandra
deployments as well. However, for small development clusters, you may find it useful
to create your own certificates.

Encryption | 347

https://oreil.ly/4FNeI
https://oreil.ly/Z3xs5
https://oreil.ly/w20Al3
https://oreil.ly/BqaVX

Generating Certificates for Development Clusters
Let’s examine how to create your own certificates for development clusters. The fol‐
lowing command gives an example of how you can use the -genkey switch on the
JDK’s keytool to generate a public/private key pair (substituting different keystore
and key passwords and distinguished name when you run this yourself):

$ keytool -genkey -keyalg RSA -alias node1 -keystore node1.keystore
 -storepass cassandra -keypass cassandra
 -dname "CN=192.168.86.29, OU=None, O=None, L=Scottsdale, C=USA"

Warning:
The JKS keystore uses a proprietary format. It is recommended to migrate
 to PKCS12 which is an industry standard format using "keytool
 -importkeystore -srckeystore node1.keystore -destkeystore node1.keystore
 -deststoretype pkcs12".

This command generates the key pair for one of your Cassandra nodes, node1, and
places the key pair in a keystore file called node1.keystore. You provide passwords for
the keystore and for the key pair, and a distinguished name specified according to the
Lightweight Directory Access Prototol (LDAP) format. It’s recommended to use the
IP address of the host for the common name (CN).

The example command shown here provides the bare minimum set of attributes for
generating a key. You could also provide fewer attributes on the command line and
allow keytool to prompt you for the remaining ones, which is more secure for enter‐
ing passwords.

PKCS12 and the Java Cryptography Extension

You probably noticed the warning message in this output, which
indicates a preference for using the the industry standard PKCS12
(.pfx) format over the Java keystore (JKS) format. When creating
certificates for development clusters, the Java keystore (JKS) format
is typically sufficient. However, if you’re planning to use cqlsh with
the development cluster or are developing clients in languages that
don’t support the JKS format, you’ll want to import your server
public keys into a PKCS12-compatible truststore for client use.

Once you have a certificate for each node, export the public key of each certificate to
a separate file:

$ keytool -export -alias node1 -file node1.cer -keystore node1.keystore
Enter keystore password:
Certificate stored in file <node1.cer>

You identify the key you want to export from the keystore via the same alias as before,
and provide the name of the output file. keytool prompts you for the keystore

348 | Chapter 14: Security

password and generates the certificate file. Repeat this procedure to generate keys for
each node and client.

Then, configure options for a file similar to the keystore called the truststore. You’ll
generate a truststore for each node containing the public keys of all the other nodes in
the cluster. For example, to add the certificate for node1 to the keystore for node2, you
would use the command:

$ keytool -import -v -trustcacerts -alias node1 -file node1.cer
 -keystore node2.truststore
Enter keystore password:
Re-enter new password:
Owner: CN=192.168.86.29, OU=None, O=None, L=Scottsdale, C=USA
Issuer: CN=192.168.86.29, OU=None, O=None, L=Scottsdale, C=USA
Serial number: 3cc50090
Valid from: Mon Dec 16 18:08:57 MST 2019 until: Sun Mar 15 18:08:57 MST 2020
Certificate fingerprints:
 MD5: 3E:1A:1B:43:50:D9:E5:5C:7A:DA:AA:4E:9D:B9:9E:2A
 SHA1: B4:58:21:73:43:8F:08:3C:D5:D6:D7:22:D9:32:04:7C:8F:E2:A6:C9
 SHA256: 00:A4:64:E9:C9:CA:1E:69:18:08:38:6D:8B:5B:48:6F:4C:9D:DB:62:17:
 8C:79:CC:ED:24:23:B8:81:04:41:59
Signature algorithm name: SHA256withRSA
Subject Public Key Algorithm: 2048-bit RSA key
Version: 3

Extensions:

#1: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: 0E 95 97 B1 69 CF 57 50 C1 98 87 F4 06 28 A7 C1 i.WP.....(..
0010: 51 AC 35 18 Q.5.
]
]

Trust this certificate? [no]: y
Certificate was added to keystore
[Storing truststore.node1]

keytool prompts you to enter a password for the new truststore and then prints out
summary information about the key you’re importing.

Once you have the keystore and truststore files for each node, deploy them to the
nodes using remote copy or secure copy protocol (SCP) tools as per your environ‐
ment. If you also intend to require certificates for your clients, the process of generat‐
ing keystores and truststores is quite similar, and of course you’ll want to add the
client public certificates to your server truststores as well.

For more detailed instructions on generating your own certificates using keytool, see
the DataStax documentation.

Encryption | 349

https://oreil.ly/cB9r-

Generating Certificates for Production Clusters
For managing production clusters (or even larger development clusters), it’s recom‐
mended to use a certificate authority (CA) to generate your certificates. The DataStax
documentation provides detailed instructions for creating a self-signed root CA using
openssl and using that to sign the certificates for your nodes (and clients, if desired).

The procedure for creating distinguished names is similar to that described earlier,
although you may wish to use the fully qualified domain name (FQDN) of the node
or client as the CN, and the IP address as a subject alternative name (SAN), so that
the certificate protects the IP address in addition to the domain name.

Whether you are using a self-signed root CA or a publicly trusted CA, you’ll need to
ensure there is a truststore for each node that provides the chain of trust for the CA.
If you’re using a public CA, it’s likely that the CA’s root certificate will be present in
your JDK’s default truststore. If you’re using a self-signed CA, a common practice is
to use the package manager for your operating system to install the CA on your
nodes as part of your infrastructure deployment.

As with development clusters, you’ll want to ensure you use a secure method to
install certificates on your nodes and clients. Whatever scheme you choose to manage
your certificates, the overall security of your Cassandra cluster depends on limiting
access to the computers on which your nodes are running so that the configuration
can’t be tampered with.

4.0 Feature: Hot Certificate Reloading
In 2018 the software industry adopted a recommended maximum validity of two
years for SSL certificates, and many environments enforce even shorter validity peri‐
ods. One ramification of this is that in a long-running production cluster you might
have nodes that will be around long enough to need new certificates. As of the 4.0
release, Cassandra supports hot reloading of certificates, which enables certificate
rotation without downtime. The keystore and truststore settings are reloaded
every 10 minutes, or you can force a refresh with the nodetool reloadssl command.

Node-to-Node Encryption
Once you have keys for each of your Cassandra nodes, you are ready to enable node-
to-node configuration by setting the server_encryption_options in the cassan‐
dra.yaml file:

server_encryption_options:
 enabled: false
 optional: false
 enable_legacy_ssl_storage_port: false
 internode_encryption: none

350 | Chapter 14: Security

https://oreil.ly/kVb2u
https://oreil.ly/kVb2u

 keystore: conf/.keystore
 keystore_password: cassandra
 truststore: conf/.truststore
 truststore_password: cassandra
 # protocol: TLS
 # store_type: JKS
 # cipher_suites: [TLS_RSA_WITH_AES_128_CBC_SHA,...]
 # require_client_auth: false
 # require_endpoint_verification: false

First, set the enabled option to true. You can also set the optional option to true to
indicate that both encrypted and unencrypted connections should be allowed on the
storage port; otherwise only encrypted connections will be allowed.

Deprecated SSL Storage Port

Versions of Cassandra prior to 4.0 used a separate ssl_stor
age_port for encrypted communications between nodes. Since
Cassandra 4.0 and later may be configured to allow both encrypted
and unencrypted connections on the storage port, the secure port
is only needed in the context of upgrading a 3.x cluster to 4.0. In
this case, the ssl_storage_port should be configured and
enable_legacy_ssl_storage_port set to true.

Next, set the internode_encryption option. You can select all to encrypt all inter‐
node communications, dc to encrypt between data centers, and rack to encrypt
between racks. Provide the password for the keystore and set its path, or place the
keystore file you created earlier at the default location in the conf directory.

The cassandra.yaml file also presents you with a series of “advanced” options to con‐
figure the cryptography. These options provide you with the ability to select from
Java’s menu of supported cryptographic algorithms and libraries. For example, for
Java 8, you can find the descriptions of these items in this Oracle documentation.

The defaults will be sufficient in most cases, but it’s helpful to understand what
options are available. You can see how these options are used in Cassandra by exam‐
ining the class org.apache.cassandra.security.SSLFactory, which Cassandra uses
to generate secure sockets.

The protocol option specifies the protocol suite that will be used to instantiate a
javax.net.ssl.SSLContext. As of Java 8, the supported values include SSLv2, SSLv3,
TLSv1, TLSv1.1, or TLSv1.2. You can also use the shortcuts SSL or TLS to get the latest
supported version of either suite.

The store_type option specifies the setting provided to obtain an instance of
java.security.KeyStore. The default value JKS indicates a keystore built by key
tool, but you can also use PKCS12 keystores as discussed previously.

Encryption | 351

https://oreil.ly/Qt5Nd

The cipher_suites option is a list of encryption algorithms in order of preference.
The cipher suite to use is determined by the client and server in negotiating their
connection, based on the priority specified in this list. The same technique is used by
your browser in negotiating with web servers when you visit websites using https:
URLs. As demonstrated by the defaults, you’ll typically want to prefer stronger cipher
suites by placing them at the front of the list.

You can also enable two-way certificate authentication between nodes, in which the
server node authenticates the client node, by setting require_client_auth to true. If
require_endpoint_verification is set to true, Cassandra will verify whether the
client node that is connecting matches the name in its certificate.

Client-to-Node Encryption
Client-to-node encryption protects data as it moves from client machines to nodes in
the cluster. The client_encryption_options in the cassandra.yaml file are quite sim‐
ilar to the node-to-node options:

client_encryption_options:
 enabled: false
 optional: false
 keystore: conf/.keystore
 keystore_password: cassandra
 # require_client_auth: false
 # truststore: conf/.truststore
 # truststore_password: cassandra
 # More advanced defaults below:
 # protocol: TLS
 # store_type: JKS
 # cipher_suites: [TLS_RSA_WITH_AES_128_CBC_SHA,...]

The enabled option serves as the on/off switch for client-to-node encryption, while
optional indicates whether clients may choose either encrypted or unencrypted
connections.

The keystore and truststore settings will typically be the same as those in the
server_encryption_options, although it is possible to have separate files for the cli‐
ent options.

Note that setting require_client_auth for clients means that the truststore for
each node will need to have a public key for each client that will be using an encryp‐
ted connection.

The cipher_suites option works the same as for the server options. If you don’t have
total control over your clients, you may wish to remove weaker suites entirely to elim‐
inate the threat of a downgrade attack.

352 | Chapter 14: Security

Simplified Certificate Management
Configuring truststores for Cassandra nodes can become something of a logistical
problem if you’re adding nodes to your cluster or additional clients on a regular basis,
or want to periodically rotate certificates.

One approach is to reuse the same certificate for all of the nodes in a cluster, and a
second certificate for all of the clients. This approach greatly simplifies the process of
managing your cluster as you won’t have to update truststores with new certificates.
This comes at the cost of fine-grained control over the trust you assign to individual
nodes and clients.

As of the 4.0 release, Cassandra supports hot reloading of certificates, which enables
certificate rotation without downtime. The keystore and truststore settings are
reloaded every 10 minutes, or you can force a refresh with the nodetool reloadssl
command.

Whatever scheme you choose to manage your certificates, the overall security of your
Cassandra cluster depends on limiting access to the computers on which your nodes
are running so that the configuration can’t be tampered with.

JMX Security
You learned how Cassandra exposes a monitoring and management capability via
Java Management Extensions (JMX) in Chapter 11. In this section, you’ll learn how to
make that management interface secure, and what security-related options you can
configure using JMX.

Securing JMX Access
By default, Cassandra only makes JMX accessible from the local host. This is fine for
situations where you have direct machine access, but if you’re running a large cluster,
it may not be practical to log in to the machine hosting each node in order to access
them using tools such as nodetool.

For this reason, Cassandra provides the ability to expose its JMX interface for remote
access. Of course, it would be a waste to invest your efforts in securing access to Cas‐
sandra via the native transport, but leave a major attack surface like JMX vulnerable.
So let’s see how to enable remote JMX access in a way that is secure.

First, stop your node or cluster and edit the conf/cassandra-env.sh file (or cassandra-
env.ps1 on Windows). Look for the setting LOCAL_JMX, and change it as follows:

LOCAL_JMX=no

JMX Security | 353

Setting this value to anything other than “yes” causes several additional properties to
be set, including properties that enable the JMX port to be accessed remotely:

JVM_OPTS="$JVM_OPTS -Dcom.sun.management.jmxremote.port=$JMX_PORT"
JVM_OPTS="$JVM_OPTS -Dcom.sun.management.jmxremote.rmi.port=$JMX_PORT"

There are also properties that configure remote authentication for JMX:

JVM_OPTS="$JVM_OPTS -Dcom.sun.management.jmxremote.authenticate=true"
JVM_OPTS="$JVM_OPTS -Dcom.sun.management.jmxremote.password.file=
 /etc/cassandra/jmxremote.password"

The location of the jmxremote.password file is entirely up to you. You’ll configure the
jmxremote.password file in just a minute, but first finish up your configuration edits
by saving the cassandra-env.sh file.

Your JRE installation comes with a template jmxremote.password file under the jre/lib/
management directory. Typically you will find installed JREs under C:\Program Files
\Java on Windows, /Library/Java/JavaVirtualMachines on macOS, and /usr/lib/java
on Linux. Copy the jmxremote.password file to the location you set previously in
cassandra-env.sh and edit the file, adding a line with your administrator username
and password, as shown in bold here:

...
monitorRole QED
controlRole R&D
cassandra cassandra

You’ll also edit the jmxremote.access file under the jre/lib/management directory to
add read and write MBean access for the administrative user:

monitorRole readonly
controlRole readwrite \
 create javax.management.monitor.*,javax.management.timer.* \
 unregister
cassandra readwrite

Configure the permissions on the jmxremote.password and jmxremote.access. Ideally,
the account under which you run Cassandra should have read-only access to this file,
and other nonadministrative users should have no access.

Finally, restart Cassandra and test that secure access is configured correctly by calling
nodetool:

$ nodetool status -u cassandra -pw cassandra

You can also configure SSL for your JMX connection. To do this, you’ll need to add a
few more JVM options in the cassandra-env file:

JVM_OPTS="${JVM_OPTS} -Dcom.sun.management.jmxremote.ssl=true"
JVM_OPTS="${JVM_OPTS} -Djavax.net.ssl.keyStore=conf/node1.keystore"
JVM_OPTS="${JVM_OPTS} -Djavax.net.ssl.keyStorePassword=cassandra"
JVM_OPTS="${JVM_OPTS} -Djavax.net.ssl.trustStore=conf/node1.truststore"

354 | Chapter 14: Security

JVM_OPTS="${JVM_OPTS} -Djavax.net.ssl.trustStorePassword=cassandra"
JVM_OPTS="${JVM_OPTS} -Dcom.sun.management.jmxremote.ssl.need.client.auth=true"

Accessing JMX via Cassandra Integrated Authentication and
Authorization

As an alternative to the preceding JMX authentication configuration, releases 3.6 and
later allow you to use Cassandra’s authentication and authorization for the JMX
interface.

You’ll need to uncomment the following lines in the cassandra-env.sh file:

#JVM_OPTS="$JVM_OPTS -Dcassandra.jmx.remote.login.config=CassandraLogin"
#JVM_OPTS="$JVM_OPTS -Djava.security.auth.login.config=$CASSANDRA_HOME/conf/
 cassandra-jaas.config"
...
#JVM_OPTS="$JVM_OPTS -Dcassandra.jmx.authorizer=org.apache.cassandra.auth.
 jmx.AuthorizationProxy"

Disable the standard authentication and authorization by commenting out the lines:

JVM_OPTS="$JVM_OPTS -Dcom.sun.management.jmxremote.password.file=
 /etc/cassandra/jmxremote.password"
JVM_OPTS="$JVM_OPTS -Dcom.sun.management.jmxremote.access.file=
 /etc/cassandra/jmxremote.access"

Note that if you choose integrated auth for JMX, you won’t be able to access JMX to
monitor a node until it joins the ring and finishes initializing the authentication
system.

Use the CQL GRANT operation to add permissions to users and roles, including:

• DESCRIBE ON MBEANS to allow listing of MBeans and operations
• SELECT ON MBEAN to allow usage of MBean set() operations
• MODIFY ON MBEAN to allow usage of MBean get() operations
• EXECUTE ON MBEAN to allow invocation of MBean actions

Security MBeans
You learned about the various MBeans exposed by Cassandra in Chapter 11. For
understandable reasons, not many security-related configuration parameters are
accessible remotely via JMX, but there are some capabilities exposed via the
org.apache.cassandra.auth domain.

JMX Security | 355

Authentication cache MBean
By default, Cassandra caches information about permissions, roles, and login creden‐
tials as a performance optimization, since it could be quite expensive to retrieve these
values from internal tables or external sources on each call.

For example, the org.apache.auth.PermissionsCache caches permissions for the
duration set in the cassandra.yaml file by the permissions_validity_in_ms property.
This value defaults to 2,000 (2 seconds), and you can disable the cache entirely by set‐
ting the value to 0. There is also a permissions_update_interval_in_ms, which
defaults to the same value as permissions_validity_in_ms. Setting a lower value
configures an interval after which accessing a permission will trigger an asynchro‐
nous reload of the latest value.

Similarly, the RolesCache manages a cache of roles assigned to each user. It is config‐
ured by the roles_validity_in_ms and roles_update_interval_in_ms properties.

The CredentialsCache caches the password for each user or role so that they don’t
have to be reread from the PasswordAuthenticator. Since the CredentialsCache is
tied to Cassandra’s internal PasswordAuthenticator, it will not function if another
implementation is used. It is configured by the credentials_validity_in_ms and
credentials_update_interval_in_ms properties.

The AuthCacheMBean allows you to override the configured cache validity and refresh
values, and also provides a command to invalidate all of the permissions in the cache.
This could be a useful operation if you need to change permissions in your cluster
and need them to take effect immediately.

Unified Authentication Caching

In releases prior to Cassandra 3.4, the permissions cache and roles
cache were separate concepts with separate MBeans. In the Cassan‐
dra 3.4 release, the class AuthCache was introduced as a base class
for all authentication-related classes, and the PermissionsCacheM
Bean and RolesCacheMBean were deprecated and replaced by the
AuthCacheMBean.

Audit Logging
Once you’ve configured security settings such as access control, you may need to ver‐
ify that they’ve been implemented correctly, perhaps as part of a compliance regime.
Fortunately, Cassandra 4.0 added an audit logging feature that you can use to satisfy
these requirements. This logging capability is to be as lightweight as possible in order
to minimize the impact on read and write latency without compromising the strict
accuracy requirements of compliance laws.

356 | Chapter 14: Security

Audit logging shares some of its implementation with full query logging (see “Full
Query Logging” on page 270), also included in the 4.0 release. The code for both fea‐
tures is found in the org.apache.cassandra.audit package. The IAuditLogger
interface describes a pluggable interface for audit loggers. Available implementations
include the FileAuditLogger, which generates human-readable messages, and the
BinAuditLogger, which writes in a compact binary format that can be read using the
fqltool introduced in Chapter 11. The AuditLogManager provides a central location
for managing registered implementations of the IAuditLogger interface. The Audi
tLogManager.log() operation exposes a single API for logging used by various por‐
tions of the Cassandra codebase that perform writes, reads, schema management, and
other operations.

While full query logging and audit logging share some implementation, the concerns
they address are distinct. While the full query logger focuses on the syntax of SELECT,
INSERT, UPDATE, and DELETE queries, it ignores other CQL queries and does not
include success or failure indications, or information about the source of queries.

Audit logging settings are found in the cassandra.yaml file:

audit_logging_options:
 enabled: false
 logger: BinAuditLogger
 # audit_logs_dir:
 # included_keyspaces:
 # excluded_keyspaces: system, system_schema, system_virtual_schema
 # included_categories:
 # excluded_categories:
 # included_users:
 # excluded_users:
 # roll_cycle: HOURLY
 # block: true
 # max_queue_weight: 268435456 # 256 MiB
 # max_log_size: 17179869184 # 16 GiB
 ## archive command is "/path/to/script.sh %path" where %path is replaced
 with the file being rolled:
 # archive_command:
 # max_archive_retries: 10

To enable audit logging, set the enabled option to true and select the desired logger.
You can include (whitelist) or exclude (blacklist) specific keyspaces or users in order
to narrow the focus of audit logging.

Audit log messages are grouped into categories that can also be included or excluded:

QUERY

Messages generated for CQL SELECT operations

DML (or data manipulation language)
Messages for CQL UPDATE, DELETE, and BATCH operations

Audit Logging | 357

DDL (or data definition language)
Messages for operations on keyspaces, tables, user-defined types, triggers, user-
defined functions, and aggregates. These latter items will be discussed in Chap‐
ter 15

PREPARE

Messages concerning prepared statements (as you learned in Chapter 8)

DCL (or data control language)
Messages generated for operations related to users, roles, and permissions

AUTH

Messages tracking login success, failure, and unauthorized access attempts

ERROR

Messages for logging CQL request failure

OTHER

The final category, currently used only to track the CQL USE command

In addition to the configuration in cassandra.yaml, you can also enable and disable
audit logging through nodetool using the enableauditlog and disableauditlog
operations. The enableauditlog also allows you to update options on specific audit
loggers such as the included or excluded categories, keyspaces, and users.

If you’re using the BinAuditLogger, binary audit logs will be written to files in the
specified directory, which defaults to the logs directory under the Cassandra installa‐
tion. The options for audit file rolling and archiving are similar to those described for
full query logging in Chapter 11.

As an example, you could configure the use of the FileQueryLogger to log operations
on a node related to the reservation keyspace:

audit_logging_options:
 enabled: true
 logger: FileAuditLogger
 included_keyspaces: reservation
 included_categories: QUERY,DML

Then restart the node. After inserting some data, you will see entries in the logs/
system.log file, like this:

INFO [Native-Transport-Requests-1] 2019-12-17 19:57:33,649
 FileAuditLogger.java:49 - user:reservation_service|
 host:127.0.0.2:7000|source:/127.0.0.2|port:52614|
 timestamp:1576637853616|type:SELECT|category:QUERY|
 ks:reservation|scope:reservations_by_hotel_date|
 operation:SELECT * FROM reservations_by_hotel_date

358 | Chapter 14: Security

As you can see, audit logging statements include not only the actual text of the CQL
statement but also the timestamp, identity of the user, and IP address of the source
that made the query. You can direct audit logging statements to their own dedicated
file by configuring the Log4j settings according to instructions provided in the Cas‐
sandra documentation.

Summary
Cassandra is just one part of an enterprise application, but it performs an important
role. In this chapter, you learned how to configure Cassandra’s pluggable authentica‐
tion and authorization capabilities, and how to manage and grant permissions to
users and roles. You enabled encryption between clients and nodes, and learned how
to secure the JMX interface for remote access. Finally, you learned how to use Cas‐
sandra’s audit log feature to help ensure compliance. This should put you in a great
position for our next topic: integrating Cassandra with other technologies.

Summary | 359

https://oreil.ly/GMqW3
https://oreil.ly/GMqW3

CHAPTER 15

Migrating and Integrating

Throughout this book we’ve looked at many aspects of Cassandra, including its ori‐
gins (Chapter 2), query language (Chapter 4), and architecture (Chapter 6); how to
create Cassandra data models (Chapter 5) and design (Chapter 7) and implement
applications using Cassandra (Chapter 8); and how to effectively configure (Chap‐
ter 10), monitor (Chapter 11), maintain (Chapter 12), tune (Chapter 13), and secure
(Chapter 14) Cassandra clusters.

Now it’s time to recap what you’ve learned from a different angle: bringing Cassandra
into your existing enterprise architecture. First, you’ll apply your knowledge to the
task of migrating a relational application to Cassandra, including adapting data mod‐
els and application code. While the focus is migration from relational databases to
Cassandra, the principles apply to migration from other database types as well. We’ll
finish up by taking a look at tools and integrations for getting data into and out of
Cassandra, and searching and analyzing data stored in Cassandra clusters.

Knowing When to Migrate
The first consideration is how to know when you need to migrate an application or
use case to Cassandra. A clear indication is when you encounter one or more of the
challenges of relational databases highlighted in Chapter 1:

• Poor performance due to volume and complexity of queries
• Challenges scaling beyond a single database node
• Availability risk due to single-node or single-region deployments
• High licensing costs associated with sophisticated multinode solutions
• High software maintenance cost due to complex queries and stored procedures

361

• Limited ability to deploy in hybrid cloud or multicloud architectures

You don’t have to have all of these challenges in order to start looking at Cassandra,
but they certainly indicate where Cassandra’s decentralized design, elastic scalability,
flexible deployment, high availability, tuneable consistency, and high performance
could be a great fit for your application, as you learned in Chapter 2.

So, how will you approach a migration project from a legacy database such as an
RDBMS to Cassandra? The history of IT is littered with overly ambitious projects
that failed by attempting to deliver too much functionality at once. To mitigate this
risk, we recommend making your transition incrementally, perhaps one or two use
cases at a time.

Adapting the Data Model
Suppose your task is to migrate a hotel reservation system to a new cloud-based sys‐
tem. You’ll want to start by adapting your data model. Building on the relational data
model for the hotel domain introduced in Chapter 5, Figure 15-1 designates primary
keys (PK) and foreign keys (FK) as well as the multiplicity of each relationship.

Figure 15-1. Reservation relational model

362 | Chapter 15: Migrating and Integrating

Considering how you might translate this relational model to Cassandra, there are
two main approaches: indirect translation and direct translation. In indirect transla‐
tion, you reverse engineer existing relational data models to produce a conceptual
model, and analyze the workflows of the applications that exercise those data models
to identify access patterns. As shown in Figure 15-2, the reverse engineered concep‐
tual data model and access patterns become inputs to the familiar Cassandra data
modeling process introduced in Chapter 5. That process begins with creating a con‐
ceptual data model and identifying access patterns, and proceeds to creating logical
data models and physical data models, and eventually schema described in CQL.

Figure 15-2. Indirect translation process

Since you’ve already learned this Cassandra data modeling process in Chapter 5, let’s
focus on direct translation, in which you translate directly from relational data mod‐
els to Cassandra. In this method, the focus is on translating the entities and relation‐
ships from the source data models into Cassandra tables using patterns that we’ll
introduce in the following sections. As in the Cassandra data modeling approach, you
will still want to review your table designs against access patterns to make sure you’re
identifying all the required queries.

Translating Entities
First, let’s consider patterns for mapping entities to Cassandra tables. The relational
Hotel table shown at the top of Figure 15-3 is an example entity table. Entities in this
table might be accessed by an existing application by the relational key HotelID, so
the first pattern is to create a hotels table in your Cassandra data model using a simi‐
lar key design.

Over time, the legacy application likely identified the need to locate hotels by name,
phone number, or other attributes, and may have created one or more indexes on
relational tables to support these queries:

/* SQL */
CREATE INDEX idx_name ON Hotels (Name);
SELECT * FROM Hotels WHERE Name='My Hotel' ;

Adapting the Data Model | 363

Figure 15-3. Entity translation

This leads to the second pattern, which is to create denormalized Cassandra tables
representing the different search combinations. For example, the hotels_by_name
table uses the name column as the partition key, and the hotel_id as a clustering col‐
umn as a safeguard to ensure a unique row should another hotel have the same name.
As you first learned in Chapter 4, the partition key and clustering column together
make up a Cassandra primary key.

Use Secondary Indexes and Materialized Views Carefully

As you learned in Chapter 7, Cassandra does provide capabilities as
an alternative to denormalization that those with a relational back‐
ground will find familiar: secondary indexes and materialized
views. Cassandra’s pluggable secondary index capability allows you
to create indexes on columns not included in a table’s primary key,
with multiple index implementations available. Remember that
queries based on indexes involve a larger number of nodes and
therefore do not scale as well as other queries. You’ll want to stress
test any intended usage using the techniques identified in Chap‐
ter 13.
Materialized views allow you to offload the work of maintaining
multiple denormalized tables to Cassandra. There are some restric‐
tions on views you can create, and this is still considered an experi‐
mental feature as of the 4.0 release.

364 | Chapter 15: Migrating and Integrating

The third pattern shown in Figure 15-3 involves the representation of complex types
in Cassandra tables. While the type of the Address column in the SQL Hotels table
has been left unspecified, it could be represented as a string (varchar) or user-defined
type, depending on the SQL variant in use. In Cassandra it would be natural to use
UDTs to describe a structure such as the Address type that can be referenced by mul‐
tiple tables within a keyspace.

Translating Relationships
Next, consider that relationships between entities are frequently modeled as tables in
relational models; these are also known as join tables. The RoomToAmenity table
shown in Figure 15-4 is one such join table that describes the relationship between a
hotel room in the Room table and an amenity that room offers to its guests in the Amen
ity table. This design provides a common definition of an amenity that could apply
to rooms across many different hotels.

Note that while the RoomToAmenity table has no additional attributes beyond the
RoomID and AmenityID that serve as foreign keys into the Room and Amenity tables,
respectively, join tables may contain additional columns. For example, the Reserva
tion table represents a more complex relationship between a hotel room and a guest
who is reserving the room.

Figure 15-4. Relationship translation

Adapting the Data Model | 365

The first pattern for translating relationships between entities is to map the relation‐
ship to a table. The amenities_by_room table is an example of this approach. Such a
table could be used alongside entity tables for amenities and rooms.

The second pattern is to collapse one of the entity types as a user-defined type (UDT)
within a containing entity table. For example, consider the design shown to the lower
right of Figure 15-4. In this design, the rooms_by_hotel table contains a set of the
amenity UDT.

Note that nothing prevents you from using both of these approaches in the same data
model. You can use the intended access patterns of your application to determine if
either or both would be appropriate. For example, the second design pattern would
be appropriate if your application needs to retrieve information about hotel rooms
and their amenities—this design allows that information to be retrieved in a single
query. You’ll want to balance this against the effort required to update amenities for
each room when they change.

Additional Translation Patterns
In their paper, “A Big Data Modeling Methodology for Apache Cassandra,” Artem
Chebotko and Andrey Kashlev investigate additional translation patterns in their
research and propose an approach for using these patterns to automate translation of
relational models to Cassandra.

For example, your system might have hierarchical data models in which a base type is
extended by multiple subtypes. Imagine a reservation application that could be used
for both hotels and vacation rentals. The data model for a more generalized domain
might include base type for a facility that could be extended with domain-specific
attributes for hotels and vacation rentals.

One pattern for representing this in Cassandra would be to use a base table with col‐
umns for all possible subtypes, to take advantage of Cassandra’s sparse storage model.
Alternatively, a string column could be used to store a JSON blob containing sub‐
type attributes, delegating the work of interpreting the blob to the application.

Whether you choose a direct or indirect translation approach, the resulting models
should be largely the same, especially if you are evaluating your proposed designs
against the queries needed by your application.

366 | Chapter 15: Migrating and Integrating

Adapting the Application
After updating your data model, the next step is to adapt (or create) the application
code. You might identify inventory and reservation processing as the use cases to
begin with, due to their impact on scalability.

You might then choose to use the microservice architecture style for the new imple‐
mentation. You could identify and design a Reservation Service using the techniques
discussed in Chapter 7, and assign responsibility for reservation data and associated
Cassandra tables to it. One approach to migration toward a microservice architecture
is to use a technique known as the strangler pattern, in which capabilities of the legacy
system are gradually replaced one at a time by microservice implementations. The
legacy system remains operational until all of its capabilities have been replaced,
whereupon it can be decommissioned.

Figure 15-5 shows an early stage in this process, in which clients are first modified to
talk to an API layer that abstracts access to the legacy application, either by emulating
its API or by providing a modern API such as a REST or GraphQL. The API layer can
delegate reservation-related requests to the Reservation Service while continuing to
direct other requests to the legacy application.

Figure 15-5. Application migration

The Reservation Service maintains its own data store based on Cassandra. Depending
on the complexity of the design, the Reservation Service may require some coordina‐
tion with the legacy application, but your goal should be to isolate the database level
as much as possible. We’ll discuss some approaches for message-based interaction in
“Managing Data Flow with Apache Kafka” on page 379.

Adapting the Application | 367

Refactoring Data Access
You’ll recall we presented a design for the Reservation Service in Chapter 7 for a Java-
based implementation. The view in Figure 15-6 is a more abstract view that highlights
our recommendation to separate out layers within each microservice implementa‐
tion. Provide one or more API endpoints using REST or GraphQL, centralize
business logic such as validation and business processes, and use the Data Access
Object (DAO) pattern to abstract the details of interactions with a specific database.

Figure 15-6. Data Access Object pattern

Using an object mapper as provided by the DataStax Java Driver is one way to imple‐
ment a DAO layer.

Maintaining Consistency
As you write or update data access code, you’ll need to consider the consistency needs
of your application. Developers familiar with relational technology are accustomed to
using transactions to accomplish writes to multiple related tables and often have con‐
cerns related to consistency in writing and reading data, including:

• “I’ve heard Cassandra is ‘eventually consistent.’ How can I make sure that I can
read data immediately after it is written?”

• “How can I avoid race conditions when inserting or updating a row, or maintain
consistency across writes to multiple tables without ACID transactions?”

• “How can I efficiently read data from multiple tables without joins?”

368 | Chapter 15: Migrating and Integrating

As you’ve learned in this book, Cassandra provides several mechanisms that allow
you to gain a bit more control over the consistency of your reads and writes. Let’s
quickly review them here:

Configuring consistency levels to achieve strong consistency
Let’s recap how you can use Cassandra’s tuneable consistency to achieve the level
of consistency you need. Cassandra allows you to specify a replication strategy at
the keyspace level which includes the number of replicas of your data that will be
stored per data center. You specify a consistency level on each CQL statement
that describes how many of those nodes must respond; typically this includes set‐
ting a default consistency level in the driver you’re using, and overriding on indi‐
vidual statements as needed.

We introduced the available consistency levels in Chapter 9 and discussed how
you can achieve strong consistency (that is, the ability to guarantee that a read
gets the most recently written data) using the QUORUM or LOCAL_QUORUM consis‐
tency level for both reads and writes. If your use case doesn’t require this level of
consistency, you can use lower consistency levels such as ONE or LOCAL_ONE to
increase write throughput.

Using batches to coordinate writes to multiple tables
New Cassandra users accustomed to relational databases are often uncomfortable
with the idea of storing multiple copies of data in denormalized tables. Typically
users become comfortable with the idea that storage is relatively cheap in modern
cloud architectures and are less concerned with these additional copies than with
how to ensure data is written consistently across these different tables.

Cassandra provides a BATCH query that allows you to group mutations to multiple
tables in a single query. You can include CQL INSERT, UPDATE, and even DELETE
statements in a batch. The guarantee of a batch is that if all the statements are
valid CQL, once any of the statements complete successfully, the coordinator will
continue to work in the background to make sure that all the statements are exe‐
cuted successfully, using mechanisms such as hinted handoff (see “Hinted Hand‐
off ” on page 118) where needed.

Keep in mind the amount of data that is in a batch. Thankfully, Cassandra pro‐
vides a configurable threshold batch_size_warn_threshold_in_kb property that
you can use to detect when clients are submitting large batches, as discussed in
Chapter 9 and Chapter 11.

Using lightweight transactions for exclusivity and uniqueness
One of the first things relational users learn about Cassandra is that it does not
support transactions with ACID semantics due to the challenges of implementing
the required locking in a distributed system. However, Cassandra provides a

Adapting the Application | 369

more limited capability called a lightweight transaction that is scoped to a single
partition; a small number of nodes are involved in the lightweight transaction.

As you learned in Chapter 9, Cassandra provides two forms of lightweight trans‐
actions: one for guaranteeing unique rows, and one for implementing check-and-
set style operations. You can use the IF NOT EXISTS syntax on an INSERT
statement to make sure a row with the same primary key does not already exist.
For example, when inserting into the reservations_by_confirmation table, you
can use this syntax to ensure the confirmation number is unique. You use the IF
<conditions> syntax to ensure that one or more values satisfy the conditions you
supply before performing an UPDATE, for example, making sure that an available
inventory count matches your expected value before decrementing it.

Using denormalization to avoid joins
Working around Cassandra’s lack of joins actually begins back in data modeling,
prior to application development. You saw an example of this in the design of the
amenities_by_room table, which is intended to allow the retrieval of information
about a hotel room and its amenities in a single query. This avoids the need for a
join on rooms and amenities tables.

There may be cases where you can’t anticipate the joins that will be needed in the
future. In microservice architectures, separate data types may be owned by differ‐
ent services with their own data stores, meaning that you wouldn’t have been able
to join the data in any case. In both of these situations you’ll most likely end up
implementing application-level joins. The emergence of GraphQL as a standard
for interfaces has helped application-level joins feel less threatening. We’ll
address more complex analytics queries in “Analyzing Data with Apache Spark”
on page 382.

Migrating Stored Procedures
A final aspect you’ll want to consider in migrating an application from a relational
database is whether some of the business logic might actually be implemented within
the database as stored procedures. Many legacy applications make use of stored pro‐
cedures for reasons including: the desire to promote reuse of common queries, an
attempt to achieve some performance benefit, or even because a DBA tasked with
helping application developers write queries wanted to abstract some complexity
away. The benefits of stored procedures are often traded against reduced application
portability and maintainability, as there may be different tools and processes required
to deploy, monitor, and debug the stored procedure.

Cassandra 2.2 introduced two features that will look familiar to those looking for
stored procedures: user-defined functions (UDFs) and user-defined aggregates
(UDAs) allow clients to shift some processing to the coordinator node. Using these

370 | Chapter 15: Migrating and Integrating

features can improve performance in some situations by reducing the amount of data
that has to be returned to the client and reducing processing load on the client, at the
cost of additional processing on the server.

User-defined functions
UDFs are functions that are applied on Cassandra nodes to stored data as part of
query processing. Before using UDFs in your cluster, enable them in the cassan‐
dra.yaml file on each node:

enable_user_defined_functions: true

Here’s a quick summary of how this works: create a UDF using the CQL CREATE FUNC
TION command, which causes the function to be propagated to every node in the
cluster. When you execute a query that references the UDF, it is applied to each row
of the query result.

Let’s create an example UDF to count the number of available rooms in the avail
able_rooms_by_hotel_date table:

cqlsh:hotel> CREATE FUNCTION count_if_true(input boolean)
 RETURNS NULL ON NULL INPUT
 RETURNS int
 LANGUAGE java AS 'if (input) return 1; else return 0;';

Let’s dissect this command a bit at a time. You’ve created a UDF named
count_if_true, which operates on a boolean parameter and returns an integer.
You’ve also included a null check to make sure the function works effectively just in
case the value is not defined. Note that if a UDF fails, execution of the query is abor‐
ted, so this can be an important check.

UDF Security

The 3.0 release added a security feature to run UDF code in a sepa‐
rate sandbox so that malicious functions can’t gain unauthorized
access to a node’s Java runtime.

Next, note that you’ve declared this to be a Java implementation with the LANGUAGE
clause. Cassandra natively supports functions and aggregates defined in Java and
JavaScript. They can also be implemented using any language supported by the Java
Scripting API specified in JSR 223, including Python, Ruby, and Scala. Functions
defined in these languages require adding additional scripting engine JAR files to
Cassandra’s Java CLASSPATH.

Finally, you include the actual Java syntax of the function with the AS clause. Now this
function is somewhat trivial by itself, because all you’re doing is counting true values
as 1. You’ll do something more powerful with this UDF in a bit.

Adapting the Application | 371

First, however, try your UDF out on the available_rooms_by_hotel_date table to
see how it works:

cqlsh:hotel> SELECT room_number, count_if_true(is_available)
 FROM available_rooms_by_hotel_date
 WHERE hotel_id='AZ123' and date='2016-01-05';

 room_number | hotel.count_if_true(is_available)
-------------+-----------------------------------
 101 | 1
 102 | 1
 103 | 1
 104 | 1
 105 | 1
(5 rows)

As you can see, the column with the function result is qualified with the hotel key‐
space name. This is because each UDF is associated with a specific keyspace. If you
were to execute a similar query in the DataStax Java Driver, you would find a Column
in each Row with the name hotel_count_if_true_is_available.

User-defined aggregates
As you’ve just learned, user-defined functions operate on a single row. In order to
perform operations across multiple rows, you create a user-defined aggregate. The
UDA leverages two UDFs: a state function and an optional final function. A state
function is executed against every row, while the final function, if present, operates
on the results of the state function.

Let’s look at a simple example to help investigate how this works. First, you’ll need a
state function. The count_if_true function is close, but you need to make a small
change to allow the available count to be summed across multiple rows. Let’s create a
new function that allows a running total to be passed in, incremented, and returned:

cqlsh:hotel> CREATE FUNCTION state_count_if_true(total int, input boolean)
 RETURNS NULL ON NULL INPUT
 RETURNS int
 LANGUAGE java AS 'if (input) return total+1; else return total;';

Note that the total parameter is passed as the first parameter, with its type matching
the return type of the function (int). For a UDF to be used as a state function, the
first parameter type and return types must match. The second parameter is the
boolean returned by the count_if_true UDF.

Now you can create an aggregate that uses this state function:

cqlsh:hotel> CREATE AGGREGATE total_available (boolean)
 SFUNC state_count_if_true
 STYPE int
 INITCOND 0;

372 | Chapter 15: Migrating and Integrating

Let’s break down this statement piece by piece: first, you’ve declared a UDA called
total_available, which operates on columns of type boolean.

The SFUNC clause identifies the state function used by this query—in this case,
state_count_if_true.

Next, you identify the type that is used to accumulate results from the state function
by the STYPE clause. Cassandra maintains a value of this type, which it passes to the
state function as it is called on each successive row. The STYPE must be the same as
the first parameter and return type of the state function. The INITCOND clause allows
you to set the initial value of the result; here, you set the initial count to zero.

In this case, you’ve omitted the final function, but you could have included a function
that took an argument of the STYPE and returned any other type, such as a function
that accepts an integer argument and returns a boolean indicating if the inventory is
at a low level that should generate an alert.

Now use your aggregate to get a count of available rooms returned by one of your
previous queries. Note that your query must only include the UDA, with no other
columns or functions:

cqlsh:hotel> SELECT total_available(is_available)
 FROM available_rooms_by_hotel_date
 WHERE hotel_id='AZ123' and date='2016-01-05';

 hotel.total_available(is_available)

 5

(1 rows)

As you can see, this query yields a result of five available rooms for the specified hotel
and date.

Additional UDF/UDA Command Options

You can use the familiar IF NOT EXISTS syntax when creating
UDFs and UDAs to avoid error messages for attempts to create
functions and aggregates with duplicate signatures. Alternatively,
you can use the CREATE OR REPLACE syntax when you actually
intend to override the current function or aggregate.
Use the DESCRIBE FUNCTIONS command or the DESCRIBE AGGRE
GATES command to learn which UDFs and UDAs have been
defined already. This can be especially useful when there are func‐
tions with the same name but different signatures.
Finally, you can delete UDFs and UDAs using the DROP FUNCTION
and DROP AGGREGATE commands.

Adapting the Application | 373

Built-in functions and aggregates
In addition to user-defined functions and aggregates, Cassandra also provides some
built-in, or native, functions and aggregates:

COUNT

The COUNT function counts the number of rows returned by a query. For example,
to count the number of hotels in the database:

SELECT COUNT(*) FROM hotel.hotels;

This command can also count the number of nonnull values of a specified col‐
umn. For example, the following could be used to count how many guests pro‐
vided an email address:

SELECT COUNT(emails) FROM reservation.guests;

MIN and MAX
The MIN and MAX functions compute the minimum and maximum value returned
by a query for a given column. For example, this query could be used to deter‐
mine the minimum and maximum stay lengths (in nights) for reservations at a
given hotel and arrival date:

SELECT MIN(nights), MAX(nights) FROM reservations_by_hotel_date
 WHERE hotel_id='AZ123' AND start_date='2016-09-09';

sum

The sum function calculates the sum of the values returned by a query for a given
column. You could sum the number of nights to be stayed across multiple reser‐
vations as follows:

SELECT SUM(nights) FROM reservations_by_hotel_date
 WHERE hotel_id='AZ123' AND start_date='2016-09-09';

avg

The avg function computes the average of all the values returned by a query for a
given column. To get the average stay length in nights, you might execute:

SELECT AVG(nights) FROM reservations_by_hotel_date
 WHERE hotel_id='AZ123' AND start_date='2016-09-09';

These built-in aggregates are technically part of the system keyspace. Therefore, the
column name containing results of your last query would be system_avg_nights.

374 | Chapter 15: Migrating and Integrating

Managing UDF/UDA Scope

When migrating an application to Cassandra, it might seem a natu‐
ral fit to convert each stored procedure into a Cassandra equiva‐
lent. That might or might not be a good case. A good rule of thumb
is to avoid using stored procedures to implement business pro‐
cesses, data transformation, or validation. It’s best to confine their
usage to very basic analytical and statistical tasks like counting
numbers of records meeting particular criteria, or calculating sums,
averages, or other mathematical operators across multiple records.

Planning the Deployment
Along with adapting your data model and application code, planning your deploy‐
ment is an important step in migrating from your existing database to Cassandra.
You’ve learned many things throughout the course of this book that will help you in
these steps:

Planning your cluster topology
As you learned in Chapter 10, your cluster topology will be primarily driven by
the data centers in which you need to deploy your application. In addition to
physical data centers, you’ll read later in this chapter about some cases in which
you may want to create additional logical Cassandra data centers within the same
physical data centers.

Make sure to configure an appropriate replication strategy for each keyspace that
includes the number of replicas you want per data center. The NetworkTopology
Strategy is almost always the right choice unless you are sure your cluster will
never extend beyond a single data center. Remember to adjust replication strate‐
gies for Cassandra’s system keyspaces to reflect that as well.

Sizing your cluster
You’ll want to size your cluster appropriately so that you have some headroom
for growth without over-provisioning. To get an estimate of the data size you can
expect for your various denormalized table designs, use the formulas described in
Chapter 5.

You should also identify performance goals for your key queries, including
desired read and write throughput and maximum latencies. Your data size and
performance requirements will help you identify the number of nodes you’ll need
in each data center to store all your data and ensure response times are within
your requirements. Use the stress testing tools and techniques described in Chap‐
ter 13 to gain confidence in your estimates.

Planning the Deployment | 375

Integration with your operational environment
Since Cassandra is just one part of your deployed system, you’ll likely have infra‐
structure in place for collecting metrics and aggregating log files. You can use
what you learned in Chapter 11 to incorporate Cassandra’s metrics and logs into
your overall monitoring platform.

You may also use scripts or an orchestration framework like Kubernetes in place
for automated deployment and management of cloud applications and infra‐
structure. You can use what you learned in Chapter 12 to help manage your Cas‐
sandra clusters in keeping with your DevOps practices.

Setting your security posture
Your Cassandra clusters will become a key part of your overall enterprise security
program, since they will be storing data that is likely of strategic business value
and may have regulatory implications. You’ll want to take advantage of features
you learned about in Chapter 14, including encryption of data in motion and at
rest. Make sure your use of Cassandra’s authentication and authorization is inte‐
grated with any enterprise identity management capability you may have in place.
Strive to create Cassandra users or roles for specific administrators, microservi‐
ces, or applications that map to the fewest privileges required to do their work.

Migrating Data
Once you’ve planned and deployed a cluster, you’re ready to begin moving your
application and its data. There are multiple techniques you can use for data migra‐
tion. These techniques are useful not only when you are migrating applications in
production, but in other cases such as loading test data into a cluster, or when you
need to add or modify tables (a process often known as schema migration).

Zero-Downtime Migration
Depending on your business requirements, you may need to transition from your
current database to Cassandra without taking your systems offline. A common inte‐
gration design pattern used to perform zero-downtime migrations is to deploy a spe‐
cial version of an application that performs writes to both the old database and the
new database. This dual write technique, shown in Figure 15-7, is usually leveraged in
combination with an initial data load using a bulk loading tool.

To execute the data migration, you first deploy the application version performing
dual writes in order to capture new data, then migrate existing data using one of the
bulk loading approaches discussed next. If there is a failure during the migration and
you need to roll it back, the legacy database will still have all the data. Once the data
migration is complete, you disable writes to the legacy database and perhaps decom‐
mission the legacy application.

376 | Chapter 15: Migrating and Integrating

Figure 15-7. Dual write example

This approach could be combined with this application migration example, in which
the API layer or another intermediate service performs the dual writes.

As an alternate approach to dual writes, you could enable the change data capture
(CDC) capabilities of your legacy database and configure or write a component to
consume the CDC events and push them into Cassandra. You’ll see one example of
how to do this in “Managing Data Flow with Apache Kafka” on page 379.

Bulk Loading
In using Cassandra, you’ll often find it useful to be able to load data into a cluster,
whether test data or data used by your application. Fortunately, there are a couple of
easy ways to bulk-load formatted data to and from Cassandra:

The cqlsh COPY command
As you learned in Chapter 9, cqlsh supports loading and unloading of comma-
separated value (CSV) files via the COPY command. For example, you could use
the following command to save the contents of the reservations_by_confirma
tion table to a file:

cqlsh:hotel> COPY reservations_by_confirmation TO 'reservations.csv'
 WITH HEADER=TRUE;

The TO value specifies the file to write to, and the HEADER option set to TRUE
causes the column names to be printed in the output file. You could edit this file
and read the contents back in with this command:

cqlsh:hotel> COPY reseravtions_by_confirmation FROM 'reservations.csv'
 WITH HEADER=true;

The COPY command supports other options to configure how quotes, escapes,
and times are represented.

Migrating Data | 377

DataStax Bulk Loader (DSBulk)
The DataStax Bulk Loader is similar to cqlsh COPY in that it provides a
command-line interface and inputs and outputs files, but with faster perfor‐
mance. DSBulk is available as a free download from the DataStax Downloads site.
While the tool originally only supported unloading from open source Cassandra
clusters, in December 2019 DataStax updated the tool to support loading into
open source Cassandra clusters. DSBulk supports both JSON and CSV formats,
and can read input from a web URL or stdin, and output to stdout. It provides
flexible formats for dates and times, and handles user-defined types as well.

Other useful features of DSBulk include its status logging and error handling.
Instead of failing immediately on a bad input line (or worse, failing silently and
continuing), the bad lines are output to a log file so you can examine them, fix
them, and try loading again. You can also configure a threshold for the maximum
number of failures encountered before the import aborts. The tool also calculates
summary statistics on every run.

The design of DSBulk was inspired by the work of Brian Hess on Cassandra
Loader. Brian has produced a series of blog posts with over 40 examples of how
to use DSBulk for various use cases.

Apache Spark
While we’ll cover the integration in more detail in “Analyzing Data with Apache
Spark” on page 382, it’s worth noting here that you can use Apache Spark to run
distributed jobs that spread the work of reading from a source database and writ‐
ing into Cassandra across multiple machines. Note that the source database could
be another Cassandra cluster or even another table in the same cluster, which
makes this is a popular approach for schema migration.

Validating Data Migration

No matter what tool you use to migrate data, you may want to have
some checks in place to make sure all of your data has been moved
correctly. The DSBulk error logging features are useful here, but
you could also write Spark jobs to manually compare data between
source and target databases a row at a time. If both your source and
target systems are Cassandra-based, the Cassandra diff project pro‐
vides a useful starting point.

378 | Chapter 15: Migrating and Integrating

https://oreil.ly/3w-7_
https://oreil.ly/zTP_d
https://oreil.ly/ZGQVc
https://oreil.ly/ZGQVc
https://oreil.ly/KA-Nk
https://oreil.ly/31HRd

Common Integrations
Whether you’re migrating an existing application to Cassandra or creating something
entirely new, you’ll likely have other infrastructure that you need Cassandra to work
alongside in order to get the most out of your data. This might already be in place, or
you might be adding it for a new application. In this final section we’ll examine a few
of the most popular integrations, many of which happen to be with other Apache
Software Foundation projects with distributed architectures.

Managing Data Flow with Apache Kafka
Apache Kafka is a distributed streaming platform that is used to build real-time data
pipelines and streaming applications. It supports a publish and subscribe style of
messaging, in which messages are published to topics in a key-value format. Similar
to Cassandra, Kafka partitions data using the key and replicates data across multiple
nodes, known as brokers in Kafka.

Cassandra and Kafka are used together frequently in microservice architectures as
shown in Figure 15-8. Revisiting the Reservation Service design from Chapter 7, you
can see one common interaction pattern. In this design, the Reservation Service
receives an API request to perform some action, such as creating, updating, or delet‐
ing a reservation. After persisting the change to Cassandra, the Reservation Service
produces a message to a reservations topic in a Kafka cluster.

Figure 15-8. Cassandra microservice integration with Kafka

Other services consume the reservations topic and perform various actions in
response to each message: for example, the Inventory Service updating inventory
tables to mark the dates as reserved, or perhaps an Email Service sending an email

Common Integrations | 379

thanking the guest for making a reservation. In this style of interaction, Cassandra
and Kafka are not connected directly, but are used in a complementary fashion.

Kafka provides some storage capability for its topics and the ability to perform quer‐
ies and joins via the KSQL query language. However, it does not provide all of the
features of a database and is primarily suitable for short-term storage. In many cases
involving larger data sets, it will be appropriate to replicate data to a database for
longer-term storage and more flexible querying. Kafka Connect is a pluggable frame‐
work for building reusable producers or consumers that connect Kafka topics to
existing databases or applications. You can find a wide variety of connectors for both
open source Kafka and the enterprise Confluent Platform at the Confluent Hub.

For our discussion here, we’ll focus on connectors provided by DataStax that work
with both Apache Kafka and Confluent Platform. The DataStax Apache Kafka Con‐
nector is a sink connector that you deploy in Kafka Connect that will automatically
take messages from Kafka topics and write them to Cassandra or DataStax Enterprise.
You could use the sink connector in a live migration of reservation data from another
system, as shown in Figure 15-9. Configure a source connector for the legacy system
database, which will write data into Kafka topics, and the DataStax Apache Kafka
Connector as a sink to write data to Cassandra.

Figure 15-9. Streaming data into Cassandra with Kafka Connect

The connector uses a configuration file to map messages from Kafka topics to one or
more Cassandra tables. This is useful for performing writes into multiple denormal‐
ized tables such as the various tables in the reservation keyspace. The connector
supports multiple serialization formats for the source message, including Avro and

380 | Chapter 15: Migrating and Integrating

https://www.confluent.io/hub

JSON, and the ability to set the CQL writetime and TTL attributes on writes to Cas‐
sandra. Because the DataStax Kafka Connector is built on the DataStax Java Driver,
all the configuration options provided by the driver are available as well.

Change Data Capture
As you read about streaming data into Cassandra, you may be wondering if the
reverse is possible—streaming data out of Cassandra. You can do this using Cassan‐
dra’s change data capture (CDC) feature, but there is an interesting challenge given
Cassandra’s distributed architecture, which we’ll explain shortly.

Cassandra introduced the CDC feature in the 3.8 release that tracks all mutations,
including CQL INSERT, UPDATE, and DELETE queries, by capturing portions of the
commit log for selected tables. The original design was based on archiving segments
of the commit log after the data was flushed to disk. The 4.0 release improved this
behavior to store an index of locations into commit log files as the commit logs are
written, increasing speed and reliability.

You enable CDC on a cluster by setting cdc_enabled: true, and your desired loca‐
tion for archived commit log segments via the cdc_raw_directory option in the
cassandra.yaml file. You then specify the individual tables to capture via the ALTER
TABLE command; for example:

cqlsh> ALTER TABLE reservation.reservations_by_confirmation WITH cdc=true;

If you enable CDC, you’ll want to make sure there is a consumer that is processing
and then deleting the commit logs. The cdc_total_space_in_mb option specifies the
maximum size of the CDC logs, and if the value exceeds this then CDC will stop. You
can write your own consumer using the org.apache.cassandra.db.commitlog.Com
mitLogReader class.

CDC provides a good starting point for streaming data from Cassandra into other
locations such as Kafka, but the key challenge of doing this is ordering and dedupli‐
cating the CDC logs from the various nodes in the cluster, since each write should
appear in as many nodes as your replication factor specifies.

DataStax has provided an early access version of a Kafka source connector known as
DataStax CDC for Apache Kafka. This CDC connector does not yet work with open
source Cassandra clusters at the time of writing, as it depends on the Advanced Repli‐
cation feature of DataStax Enterprise for deduplication.

Common Integrations | 381

https://oreil.ly/TEKoi

Searching with Apache Lucene, SOLR, and Elasticsearch
Even if you follow the best practices for Cassandra data modeling and design multiple
denormalized tables to support different queries, you may encounter cases where you
need more advanced search semantics than just querying data by a primary key. For
example, you may require full text search features such as case insensitivity, substring
search, or fuzzy mapping. Or you might have location data and need to perform geo‐
spatial queries such as finding all the hotels within a certain radius from a specific
latitude/longitude.

Distributed search capability can be added to Cassandra via Apache Lucene, which
provides an engine for distributed indexing and searching, and its subproject, Apache
Solr, which adds REST and JSON APIs to the Lucene search engine. DataStax Enter‐
prise Search provides an implementation of Cassandra’s pluggable secondary index
interface. It maintains Lucene indexes on each node in the cluster and uses Solr’s APIs
to implement searching. This integrated approach is more efficient than running a
separate search cluster. Stratio has provided a plug-in that uses a similar approach.

Elasticsearch is another popular open source search framework built on top of
Apache Lucene. It supports multitenancy and provides Java and JSON over HTTP
APIs. The Elassandra project provides a forked version of Elasticsearch that works as
a secondary index implementation for Cassandra.

Analyzing Data with Apache Spark
with Patrick McFadin

In a successful deployment of any application, you can expect your business partners
to approach you with questions that require in-depth analysis of your data. There are
many commercial analytics and business intelligence products that can ingest data
from Cassandra, including Stream Analytix, Tableau, and Teradata. You can also use
ETL tools such as Informatica or Talend to extract data from your Cassandra clusters
into a data lake or data warehouse for future analysis.

In this section, we’ll focus on the most popular open source analytics integration,
Apache Spark. Spark is a data analytics framework that provides a massively parallel
processing framework to enable simple API calls across large volumes of data. Origi‐
nally developed in 2009 at UC Berkeley as an improvement to MapReduce, Spark was
open sourced in 2010, and became an Apache project in 2014.

Unlike Apache Hadoop, which writes intermediate results to disk, the Spark core pro‐
cessing engine is designed to maximize memory usage while minimizing disk and
network access. Spark uses streaming instead of batch-oriented processing to achieve
processing speeds up to 100 times faster than Hadoop. In addition, Spark’s API is
much simpler to use than Hadoop.

382 | Chapter 15: Migrating and Integrating

https://oreil.ly/J6jg9
https://oreil.ly/Kt5VT
https://oreil.ly/Kt5VT
https://oreil.ly/WObzc
https://oreil.ly/334x1
https://www.elassandra.io/
http://spark.apache.org/

Spark provides multiple APIs for working with data at different levels of abstraction.
The base level of data representation in Spark is the Resilient Distributed Dataset
(RDD). The RDD is a description of the data to be processed, such as a file or data
collection. Once an RDD is created, the data contained can be transformed with API
calls as if all of the data were contained in a single machine. However, in reality, the
RDD can span many nodes in the network by partitioning. Each partition can be
operated on in parallel to produce a final result. The RDD supports the familiar map
and reduce operations plus additional operations such as count, filter, union, and
distinct. For a full list of transformations, see the Spark documentation.

Spark provides two additional APIs on top of RDDs: Datasets and DataFrames. A
Dataset provides the functionality of an RDD and adds the ability to query data using
Spark SQL. A DataFrame is a Dataset that is organized into named columns, similar
to a table in relational databases or Cassandra. DataFrames can be constructed from
structured datafiles, existing RDDs, tables in Hive, or external databases.

Spark provides API support in Java, Scala, Python, and the R statistics language. In
addition to the core engine, Spark includes further libraries for different types of pro‐
cessing requirements, including Spark SQL for SQL and structured data processing,
MLlib for machine learning, GraphX for graph processing, and Spark Streaming. For
a more fulsome introduction, we suggest the O’Reilly book Spark: The Definitive
Guide, by Matei Zaharia and Bill Chambers.

Use cases for Spark with Cassandra
Apache Cassandra is a great choice for transactional workloads that require high scale
and maximum availability. Apache Spark is a great choice for analyzing large volumes
of data at scale. Combining the two enables many interesting use cases that exploit
the power of both technologies.

An example use case is high-volume time-series data. A system for ingesting weather
data from thousands of sensors with variable volume is a perfect fit for Cassandra.
Once the data is collected, further analysis on data stored in Cassandra may be diffi‐
cult given that the analytics capabilities available using CQL are limited. At this point,
adding Spark to the solution will open many new uses for the collected data. For
example, you can pre-build aggregations from the raw sensor data and store those
results in Cassandra tables for use in frontend applications. This brings analytics
closer to users without the need to run complex data warehouse queries at runtime.

Or consider the hotel application discussed throughout this book. You can use Spark
to implement various analytic tasks on reservation and guest data, such as generating
reports on revenue trends, or demographic analysis of anonymized guest records to
determine where your company should build a new hotel.

Common Integrations | 383

https://oreil.ly/mYU69
http://shop.oreilly.com/product/0636920034957.do
http://shop.oreilly.com/product/0636920034957.do

One use case to avoid is using Spark-Cassandra integration as an alternative to a
Hadoop workload. Cassandra is suited for transactional workloads at high volume
and shouldn’t be considered as a data warehouse. When approaching a use case where
both technologies might be needed, first apply Cassandra to solving a problem suited
for Cassandra, such as those discussed in Chapter 2. Then consider incorporating
Spark as a way to analyze and enrich the data stored in Cassandra without the cost
and complexity of extract, transform, and load (ETL) processing.

Deploying Spark with Cassandra
A Spark cluster consists of a Spark Cluster Manager and Spark Workers. Clients cre‐
ate SparkContext objects used to submit jobs to the Spark Cluster Manager, which
distributes the work to the Spark Executors on each node. Several Cluster Managers
are available, including implementations for Apache Mesos, Hadoop YARN, and
Kubernetes. There is also a standalone Cluster Manager useful for test and develop‐
ment work on a single-node cluster.

Now let’s look at deploying Spark and Cassandra together. While it is possible to
deploy Spark and Cassandra clusters independently, you can gain performance and
efficiency by co-locating a Spark Worker on each Cassandra node in a data center, as
shown in Figure 15-10. Because Cassandra places data per node based on token
assignment, this existing data distribution can be used as an advantage to parallelize
Spark jobs. This is the architecture used by DataStax Enterprise Analytics, which you
can also emulate in your own deployments of Cassandra and Spark.

Figure 15-10. Topology of a Spark-Cassandra cluster

Here’s how this works: when a job is submitted to the Spark Cluster Manager, the
Spark Workers on each node spawn Spark Executors to complete the work. Using the
spark-cassandra-connector as a conduit, the data required for each job is sourced

384 | Chapter 15: Migrating and Integrating

from the local node as much as possible. You’ll learn more about the connector
momentarily.

Because each node contains a portion of the entire data in the cluster, each Spark
Worker will only need to process that local subset of data: for example, a count action
on a table. Each node will have a range of the table’s data. The count is calculated
locally and then merged from every node to produce the total count.

This design maximizes data locality, resulting in improved throughput and lower
resource utilization for analytic jobs. The Spark Executors only communicate over
the network when data needs to be merged from other nodes. As cluster sizes get
larger, the efficiency gains of this design are much more pronounced.

Using a Separate Data Center for Analytics
A common deployment model for Cassandra and analytics toolsets such as Spark is
to create a separate data center for analytic processing. This has the advantage of iso‐
lating the performance impact of analytics workloads from the rest of the cluster. The
analytics data center can be constructed as a “virtual” data center where the actual
hardware exists in the same physical location as another data center within the clus‐
ter. Using the NetworkTopologyStrategy, you can specify a lower replication factor
for the analytics data center, since your required availability in this data center will
typically be lower.

The spark-cassandra-connector

The spark-cassandra-connector is an open source project sponsored by DataStax
on GitHub. The connector can be used by clients as a conduit to read and write data
from Cassandra tables via Spark. The connector provides features including SQL
queries and server-side filtering. The connector is implemented in Scala, but a Java
API is available as well. API calls from the spark-cassandra-connector provide
direct access to data in Cassandra in a context related to the underlying data. As
Spark accesses data, the connector translates to and from Cassandra as the data
source.

To start using the spark-cassandra-connector, you’ll need to download both the
connector and Spark. The connector documentation provides a useful quick start
guide. You can either download a pre-built version of Spark, or build Spark yourself
from the source, from the Apache Spark website. If you’d just like to experiment, you
can also download a copy of DataStax Enterprise from the DataStax downloads page
and enable analytics mode, as it is free for nonproduction use.

Let’s review the common API elements used for most Spark jobs accessing data in
Cassandra. The spark-shell is a great way to get started, which is available in the bin

Common Integrations | 385

https://oreil.ly/nIRpn
https://oreil.ly/fUNvk
https://oreil.ly/fUNvk
https://spark.apache.org
https://oreil.ly/2xHXX

directory of your Spark installation. (The pyspark shell is another option if you’re
more comfortable with Python.) You’ll need to provide the location of the connector
jar files on the classpath and the location of at least one node in the Cassandra cluster
using the spark.cassandra.connection.host property. If you have authorization
enabled on your Cassandra cluster, as you learned about in Chapter 14, you’ll need to
include your login credentials via the properties spark.cassandra.auth.username
and spark.cassandra.auth.password, respectively.

For example, you might point to the Cassandra node on local host like this (some
output lines omitted for clarity):

$ spark-shell --conf spark.cassandra.connection.host=127.0.0.1
 --packages com.datastax.spark:spark-cassandra-connector_2.11:2.4.3
...
Spark context available as 'sc' (master = local[*], app id = local-1584302262471).
Spark session available as 'spark'.
Welcome to
 ____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /___/ .__/_,_/_/ /_/_\ version 2.4.5
 /_/

Using Scala version 2.11.12 (OpenJDK 64-Bit Server VM, Java 1.8.0_232)
Type in expressions to have them evaluated.
Type :help for more information.

scala>

You’ll note from the info messages that the SparkContext is available. Before you do
anything else, you’ll want to import libraries to enable the SparkContext to talk to
your Cassandra cluster (from this point forward we’ll omit the scala> prompt, except
when we need to distinguish input from output):

import com.datastax.spark.connector._
import org.apache.spark.sql.cassandra._

Running Examples Using DataStax Enterprise Analytics

If you want to run these examples using DataStax Enterprise, you’ll
start the nodes in your cluster in analytics mode using the syntax
dse cassandra -k, which automatically starts a Spark Worker on
each node and designates one node as the Spark Cluster Manager.
To run the Spark Shell, use the command dse spark on one of the
nodes. The spark-cassandra-connector is already integrated, so you
don’t need to specify its location on the classpath when starting
spark-shell, or import libraries at the Scala prompt, as in the
commands above.

386 | Chapter 15: Migrating and Integrating

Once the SparkContext is created, you can then operate on Cassandra data using the
Spark RDDs and DataFrames. For example, here’s how you create a DataFrame repre‐
senting the reservations_by_hotel_date table from the reservation keyspace
introduced in Chapter 5 (note you should enter this on a single line):

val reservationDf = spark.read.format("org.apache.spark.sql.cassandra")
 .options(Map("keyspace" -> "reservation",
 "table" -> "reservations_by_hotel_date"))
 .load()

You can also use the cassandraFormat() method, which is simpler (note the table
name comes first, followed by the keyspace name):

val reservationDf = spark.read.cassandraFormat("reservations_by_hotel_date",
 "reservation")
 .load()

To see the schema that Spark infers for your DataFrame, use the printSchema()
operation (output included):

scala> reservationDf.printSchema()
root
 |-- hotel_id: string (nullable = true)
 |-- start_date: date (nullable = true)
 |-- room_number: short (nullable = true)
 |-- confirm_number: string (nullable = true)
 |-- end_date: date (nullable = true)
 |-- guest_id: string (nullable = true)

Now that you’ve created a DataFrame, you can perform transformations and actions
on it. For example, to get the total number of reservations, create the following action
to count every record in the table:

println("Number of reservations: " + reservationDf.count)

Because this is running as an analytics job in parallel with Cassandra, it is much more
efficient than running a SELECT count(*) FROM reservations from cqlsh, espe‐
cially as the size of your cluster grows.

As the underlying structure of the DataFrame is a Cassandra table, you can use CQL
to filter the data and select rows. In Cassandra, filter queries using native CQL
require a partition key to be efficient, but that restriction is removed when running
queries as Spark jobs.

For example, you might derive a use case to produce a report listing reservations by
end date, so that each hotel can know who is checking out on a given day. In this
example, end_date is not a partition key or clustering column, but you can scan the
entire cluster’s data looking for reservations with a checkout date of September 8,
2020:

Common Integrations | 387

val reservationsByEndDate = reservationDf.filter($"end_date" === "2020-09-08")

// Invoke the action to run the Spark job
reservationsByEndDate.collect.foreach(println)

Finding and retrieving data is only half of the functionality available—you can also
save data back to Cassandra. Traditionally, data in a transactional database would
require extraction to a separate location in order to perform analytics. With the
spark-cassandra-connector, you can extract data, transform in place, and save it
directly back to a Cassandra table, eliminating the costly and error-prone ETL
process.

For example, we might use the following code to create a report on the number of
guests departing on each date and save the results to a Cassandra table:

val departureReport = reservationDf.groupBy("end_date")
 .agg(Map("*" -> "count"))
 .withColumnRenamed("COUNT(1)", "total_departures")

departureReport.createCassandraTable(
 "reservation",
 "departures_by_date",
 partitionKeyColumns = Some(Seq("end_date")))

departureReport.write.cassandraFormat("departures_by_date", "reservation")
 .save()

This is a simple example, but the basic syntax applies to any data. A more advanced
example would be to calculate the average daily revenue for a hotel and write the
results to a new Cassandra table. In a sensor application, you might calculate high
and low temperatures for a given day and write those results back out to Cassandra.

Querying data is not just limited to Spark APIs. With SparkSQL, you can use familiar
SQL syntax to perform complex queries on data in Cassandra, including query
options not available in CQL. It’s easy to create enhanced queries such as aggrega‐
tions, ordering, and joins using the spark object, which is automatically available to
you in the spark-shell. For example, if you wanted to create a report for guests
arriving on a certain date, you could perform this query using a join, after first creat‐
ing temporary views to represent the Cassandra tables being joined:

spark.sql("""CREATE TEMPORARY VIEW reservations_by_confirmation
 USING org.apache.spark.sql.cassandra
 OPTIONS (
 table "reservations_by_confirmation",
 keyspace "reservation",
 pushdown "true")""")

spark.sql("""CREATE TEMPORARY VIEW reservations_by_confirmation
 USING org.apache.spark.sql.cassandra
 OPTIONS (

388 | Chapter 15: Migrating and Integrating

 table "guests",
 keyspace "reservation",
 pushdown "true")""")

val arrivalList = spark.sql("""
 SELECT * from reservations_by_confirmation
 JOIN guests
 ON reservations_by_confirmation.guest_id = guests.guest_id
 WHERE end_date = '2020-09-08'""")

arrivalList.show()

The arrivalList returned from the spark.sql() operation is a DataFrame that you
can manipulate using DataFrame APIs, for example to show() the results as was done
here.

Once you’ve developed queries using spark-shell, you’re ready to implement them
in application code. If you’re building an application in Java or Scala and using
Maven, you’ll want to add dependencies such as the following to your project’s
pom.xml file to access the Spark core and connector:

<dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-sql_2.11</artifactId>
 <version>2.4.5</version>
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>com.datastax.spark</groupId>
 <artifactId>spark-cassandra-connector_2.11</artifactId>
 <version>2.4.3</version>
</dependency>

You’ve just scratched the surface of what you can accomplish with Cassandra and
Spark. For example, you can use Cassandra as input to machine learning using Spark
ML in order to gain additional insights from your data.

Summary
In this chapter, we’ve provided a roadmap for migrating applications to Cassandra
and just scratched the surface of the many integration options available for Cassan‐
dra. Hopefully we’ve piqued your interest in the wide range of directions you can take
your applications using Cassandra and related technologies.

And now we’ve come to the end of our journey together. If we’ve achieved our goal,
you now have an in-depth understanding of the right problems to solve using Cas‐
sandra, and how to design, implement, deploy, and maintain successful applications.

Summary | 389

Index

Symbols
2PC (two-phase commit), 8, 121

A
AbstractCompactionStrategy class, 126
AbstractRead Executor class, 119
AbstractReplicationStrategy class, 115
access control, 344-346, 353, 366
accrual failure detection, 109
ACID (atomic, consistent, isolated, durable),

6-9
ActiveRepairService class, 277
aggregates, 133, 257, 264, 269
ALL consistency level, 116, 200
ALLOW FILTERING keyword, 144
AllowAllAuthenticator, 339
AllowAllAuthorizer, 342
AllowAllInternodeAuthenticator, 340
ALTER TABLE command, 61
ALTER USER command, 341
Amazon Dynamo, 17, 25, 118, 120
Amazon DynamoDB, 118
Amazon EC2, 111, 237
Amazon Elastic Block Store (see EBS)
Amazon Machine Images (AMIs), 238
Amazon Simple Storage Service (see S3)
Amazon Virtual Private Cloud (see VPC)
Amazon Web Services (see AWS)
analytics, 382
Ant, downloading, 38
anti-entropy protocol, 119
anticompaction, 126
ANY consistency level, 118, 188, 189, 200

AP, primarily supporting availability and parti‐
tion tolerance, 26

Apache Cassandra (see Cassandra)
Apache Cloudstack, 111, 222
Apache distribution, installing Cassandra,

35-37
Apache Hadoop, 382
Apache Incubator, 29
Apache Kafka, 9, 379-381
Apache Lucene, 382
Apache SOLR, 382
Apache Spark, 378, 382-389
append-only storage model, 127
APPLY BATCH command, 197
architecture, Cassandra, 107-134

anti-entropy, 119-120
Bloom filters, 124
caching, 125
commit logs, 122-124
compaction, 125-127
consistency levels, 115
data centers and racks, 107-108
deletion and tombstones, 127
gossip and failure detection, 108-110
hinted handoff, 118
lightweight transactions, 120
managers and services, 128-131
memtables, 122-124
Merkle tree, 120
partitioners, 113
Paxos, 121
queries and coordinator nodes, 117
replication strategies, 114
snitches, 110

391

SSTables, 123-127
system keyspaces, 131-134
tokens and rings, 111-113
virtual nodes, 113

AS SELECT clause, 149
ascii data type, 68
ASGs (Auto Scaling groups), 297
assassinating nodes, 289
Astyanax (client driver), 157
asynchronous execution, 170, 184
atomic batches, 198
atomicity for transactions, 6, 9
audit logging, 356
authentication and authorization, 177, 339-344
AuthenticationException, 160
AuthProvider interface, 177
auto bootstrapping, 219
Auto Scaling groups (see ASGs)
autobootstrap property, 282
automatic paging, 208
autonomy, microservice architecture, 136
auto_snapshot property, 294
availability, 23-27, 187

(see also high availability)
avg function, 374
AWS (Amazon Web Services), 14, 236-239
AWS CloudFormation, 239
Azure Resource Manager, 240
Azure Virtual Network (VNet), 240

B
backup and recovery, 292-295
badness threshold, 111
batches, 369

system keyspaces, 133
writing data, 196-199

batchlog, 198, 330
BEGIN BATCH command, 197
benchmarking, performance tuning, 307
bigint data type, 67
Bigtable, 17, 26
bin directory, 36
binary large objects, 70
BinAuditLogger, 358
bind marker, 166
BlacklistedDirectoriesMBean, 286
blob data type, 70
blocking (two-phase commits), 8
blogs, Cassandra-related, 32

Bloom filters, 124, 202, 324
Bloom, Burton, 124
boolean data type, 70
bootstrapping, 219, 282
bounded contexts, identifying in microservice

architecture, 138
BoundStatement, DataStax Java Driver, 164
Brewer, Eric, 23, 26
Brewer’s CAP theorem, 23-27
bucketing, 100
buffer cache, 323
BuildableQuery interface, 166
Building Microservices (O’Reilly), 135
built-in functions and aggregates, 374
bulk loading, for migration, 377
ByteOrderedPartitioner, 223

C
C# and .NET framework, 158
CA ERwin Data Modeler, 9
CA, primarily supporting consistency and

availability, 25
CacheServiceMBean, 250
caching

in Cassandra architecture, 125
employing a caching layer, 4
performance tuning, 317-320
unified authentication, 356

Calvin transaction protocol, 15
camel case, 49
CAP theorem, 23-27
“CAP Twelve Years Later: How the ‘Rules’ Have

Changed” (Brewer), 26
CAPI-RowCache, 319
case

DataStax Java Driver, 180
in cqlsh, 46
snake vs. camel case styles, 49

“The Case for Shared Nothing” (Stonebreaker),
12

Cassandra
application development with drivers,

157-183
architecture, 107-134
cloud deployments, 31, 236-240
community resources, 31-33
configuring, 213-228
data modeling for, 81-105
data, writing and reading, 187-212

392 | Index

deciding on fit for your project, 30-31
designing applications with, 135-156
differences from RDBMS, 55, 83-86
distributions, 35, 44
geographical distribution of data, 31
installing, 35-39
integrations, 379-389
introduction, 17-33
for large deployments, 30
maintenance, 273-302
migrating, 361-378
monitoring, 243-270
origins, 28-30
performance tuning, 305-336
planning cluster deployment, 229-236
releases, 35
running, 39-43
writes, statistics and analysis, 30

cassandra -f command, 41
cassandra -p command, 43
“Cassandra: A Decentralized Structured Storage

System” (Lakshman and Malik), 29
Cassandra Cluster Manager (see ccm)
Cassandra Enhancement Proposal (see CEP)
Cassandra Kubernetes Operators, 299-302
Cassandra Loader, 378
Cassandra Query Language (see CQL)
Cassandra Sidecars, 298
cassandra-cli (removed), 45
cassandra-env.sh file, 274, 334
cassandra-rackdc.properties file, 221, 238
cassandra-stress, 308-311
cassandra-topology.properties file, 221
cassandra.yaml file, 36, 40, 113, 274
CassandraAuthorizer, 342
CassandraDaemon interface, 128
CassandraMetricsRegistry class, 253
CassandraRoleManager, 339
CASSANDRA_HOME directory, 40
CassKop, 302
causal consistency, 21
ccm (Cassandra Cluster Manager), 213-219
CDC (change data capture), 156, 377, 381
cells (values), number in a partition, 97
CEP (Cassandra Enhancement Proposal), 32
certificates, 347, 353
change data capture (see CDC)
cheap quorum, 205
Chebotko diagrams, 88, 93

check-and-set semantics, 121
choreography, 155
chunk cache, 125, 319
classes, 128, 131, 168
clean (build target), 39
cleanup, 275
CLI (command-line interface) client

(removed), 45
client-to-node encryption, 352
clients, performance tuning, 335
client_encryption_options, 352
cloud environments

cluster topology, 229
deployment into the cloud, xxi, 31, 236-240
relational databases and, 5
snitches for, 111, 222

CloudstackSnitch, 222
cluster-related MBeans, 250
clustering columns, 57, 86, 90, 207
clusters, 217

(see also nodes)
adding nodes, 217, 283
Cassandra’s data model, 59
ccm, 213-219
connecting DataStax Java Driver, 159
creating, 214-217
dedicated vs. shared, 153
dynamic ring participation, 218
name changes, 214
nodetool for monitoring, 254-257
planning deployment, 229-236
replication strategies, 230
selecting instances, 234
sizing, 232
system keyspaces, 131-134
topology, 229

CMS (Concurrent Mark Sweep) garbage collec‐
tor, 332

Codd, Edgar F.
12 Rules for relationsl data, 4
“A Relational Model of Data for Large

Shared Data Banks”, 2
collections, 72-75, 77
column stores, 14
column-oriented database, vs. Cassandra, 27
column-oriented store, 14, 57
ColumnFamilyStore class, 129
ColumnFamilyStoreMBean, 249, 326
columns

Index | 393

Cassandra’s data model, 57-59, 63-66
creating a table, 50
partition size calculation, 97
secondary index pitfalls, 147
static, 97

commit logs
in Cassandra architecture, 122
data storage, 226
performance tuning, 321
writing data, 187, 190, 191

CommitLogMBean, 250
commitlog_compression property, 322
commitlog_directory property, 227
commitlog_sync element, 322
commitlog_sync_period_in_ms property, 322
commit_failure_policy property, 227
commit_log_sync_batch_window_in_ms, 322
compaction

in Cassandra architecture, 125
large partition warning, 314
nodetool cleanup command, 275
performance tuning, 325-328
tombstones and, 211
validation, 120, 277

compaction strategies, 126, 232, 325
compaction threshold, 327
CompactionManager class, 126, 247
CompactionManagerMBean class, 250, 328
CompactionParameters attribute, 326
compaction_throughput_mb_per_sec property,

328
compensation for two-phase commit, defined,

8
complex event processing system, 9
composite key, 57
compression

client–node messages, 177
commit log, 322
performance tuning, 335
SSTables, 124, 323

CompressionInfo.db, SSTable component, 192
conceptual data modeling, 81
concurrency, performance tuning, 328
Concurrent Mark Sweep garbage collector (see

CMS)
concurrent_compactors property, 328
conditional write statements, 195
conf directory, 36
conferences, Cassandra community, 33

configuration files, 227, 291
(see also cassandra.yaml file)

configuring Cassandra, 213-228
connection errors, installing Cassandra, 46
connection heartbeat, DataStax Java Driver, 176
connection pooling, 176
consensus algorithms, 121
consistency

Cassandra’s tuneable, 20-23
defined, 6
LWT and Paxos, 120
maintaining among microservices, 154
relationship to availability and partition tol‐

erance, 23-27
scalability challenge and, 3
SERIAL and LOCAL_SERIAL, 196
types of, 21-23

CONSISTENCY command, 188
consistency levels

in Cassandra architecture, 115
deletes, 211
maintaining during migration, 368
performance tuning, 369
reading data, 200, 203
repairs, 276, 280
replication factors and, 116, 314, 346
writing data, 187-188, 195

ConstantReconnectionPolicy, 175
ConstantSpeculativeExecutionPolicy, 176
container deployments, 44
coordinator nodes, 117, 121, 189-191, 201
COUNT function, 374
counter batches, 196
counter cache, 125, 319
counter data type, 71
counters, 196
counter_cache_size_in_mb, 319
CP, primarily supporting consistency and parti‐

tion tolerance, 26
CQL (Cassandra Query Language), 55-79

Cassandra's data model, 56-66
client drivers and, 158
CQL data types, 66-79
defining database schema, 101-105
introduction of, 28
relational data model, 55
representing other database models in, 141
tools to manage, 103-105

CQL data types, 66-79

394 | Index

collections, 72-75
numeric data types, 67
textual data types, 67
time and identity data types, 68-70
tuples, 75
user-defined types, 76-79

CQL Native Protocol, 131, 176, 262
CQL shell, 45-53, 68
CqlIdentifier class, 180
CqlSession class, 160-161
CqlSession object, 160-161
CqlSession.Builder class, 172
$CQLSH_HOST environment variable, 45
$CQLSH_PORT environment variable, 45
CREATE CUSTOM INDEX command, 147
CREATE KEYSPACE command, 48
CREATE MATERIALIZED VIEW command,

149
CREATE OR REPLACE syntax, 373
CREATE TABLE command, 49, 86, 207
CREATE TYPE command, 76
CREATE USER command, 341
CRUD services, 155
cryptography, 223, 351

D
DAO (Data Access Object), 167
data

deleting, 127
refactoring access to, 368
writing and reading, 187-212

Data Access Object (see DAO)
data center awareness, 174
data centers

adding nodes, 282
adding to a cluster, 283
application design considerations, 154
in Cassandra architecture, 107
cloud deployment, 236
cluster topology, 229-232, 375
coordinator nodes and multiple, 189
network authorization, 345
removing, 290
timeouts, 236

data consistency (see consistency)
Data Definition Language (see DDL)
data directory, 40
Data Manipulation Language (see DML)
data modeling, 27, 81-105

(see also CQL)
adapting the model for migration, 362-366
conceptual data modeling, 81
defining application queries, 86
defining database schema, 101-105
evaluating and refining, 97-100
logical, 87-93
partitioned row store, 27
physical, 93-96
RDBMS design, 82-86
relational vs. Cassandra’s data model, 55-59
schema-free, 27

data storage (see storage)
data types

assigning, 93-96
CQL, 66-79
maintaining among microservices, 154

Data.db, SSTable component, 192
database MBeans, 247-250
database vs. keyspace, 59
datafiles, 40, 227, 289
DataStax, 29
DataStax Academy, 33
DataStax Bulk Loader (see DSBulk)
DataStax C# Driver, 183
DataStax DevCenter, 104
DataStax Enterprise, 44, 143, 159, 302, 346
DataStax Java Driver, 158-181

asynchronous execution, 170
authentication with, 342
batching with, 197
configuration, 172-178
connecting to a cluster, 159
debugging, 180
development environment configuration,

158
logging, 180
metadata, 178
metrics, 181
microservice using, 152
monitoring, 180
object mappers, 167-170
query builder, 165-167
statements, 161-165

DataStax Node.js Driver, 182
DataStax Ops Center, 298
DataStax Python Driver, 181
DataStax Ruby and PHP Drivers, 184
DataStaxEnterprise-specific drivers, 159

Index | 395

data_file_directories property, 227
date data type, 68
dateOf() function, 69
dates and times data types, 68-70
DateTieredCompactionStrategy (see DTCS)
DCAwareRoundRobinPolicy, 174
DDL (Data Definition Language), 6
DEBUG logging level, 266
debugging, DataStax Java Driver, 180
decentralized database, 18-19
decimal data type, 67
decommissioning nodes, 287, 289
Dedicated Interconnect, 240
DELETE command, 52, 74
deleting data, 127
denormalization, 4, 84, 92, 148, 370
deployment considerations

application design, 153-156
cloud deployment, 236-240
planning, 229-236, 375
when deciding on Cassandra, 30

DESCRIBE command, 47
DESCRIBE FUNCTIONS command, 373
DESCRIBE KEYSPACE command, 47, 49, 76,

145
DESCRIBE TABLE command, 50, 61
Designing Data-Intensive Applications

(O’Reilly), 9
DevCenter, 104
development clusters, 348
development environments, configuring, 158
DHT (distributed hash table), 114
diff command, 217, 291
differential backups, 292
digest requests, 201, 203
Digest.crc32, SSTable component, 193
directory-based sharding, 11
disk configruation, cluster deployment, 234
disks

reads and seeks on writes, 187
size calculation, 98-100
writing files to, 191-193

disk_failure_policy property, 227, 285
distributed database, 7-8, 18-19, 156
distributed hash table (see DHT)
distributed tracing, 316
DML (Data Manipulation Language), 6
doc directory, 37
Docker

creating a cluster in, 228
running Cassandra in, 44, 53-54

document models, 141
document stores, 14
Domain-Driven Design (Evans), 137
double data type, 67
drivers, application development with, 157-183

DataStax Java Driver, 158-181
other Cassandra drivers, 181

DROP AGGREGATE command, 373
DROP command, 76
DROP FUNCTION command, 373
DROP INDEX command, 146
DROP TABLE command, 53
DROP USER command, 341
Dropwizard Metrics, 253
DSBulk (DataStax Bulk Loader), 378
DTCS (DateTieredCompactionStrategy) (dep‐

recated), 326
dual-write technique, migration, 376
durability of transactions, 6
durable writes, 49
dynamic ring participation, 218
dynamic snitching, 111
DynamicEndpointSnitch, 111, 222, 251
DynamicEndpointSnitchMBean, 251
Dynamo, 17, 25, 118, 120
DynamoDB, 118

E
EACH_QUORUM consistency level, 188, 200,

284
EBS (Elastic Block Store), 238
EC2 (Elastic Compute Cloud), 111, 237
Ec2MultiRegionSnitch, 222
Ec2Snitch, 222
eden space, 332
elastic scalability, 19
Elasticsearch, 382
Ellis, Jonathan, 29
EmbeddedCassandraService, 129
encapsulation, microservice architecture, 136
encryption, 177, 346-353
EndpointSnitchInfoMBean, 251
endpoint_snitch property, 283
entities, translating for migration, 363
entity-relationship model, 82
enumerated values, converting to/from strings,

67

396 | Index

environment script, 228
epidemic protocols (see gossip protocol)
ERROR logging level, 266
Evans, Eric

Domain-Driven Design, 137
eventual consistency, 20-23
exceptions, 46, 160, 165, 175
execution profiles, DataStax Java Driver, 177
ExponentialReconnectionPolicy, 175
extraction utilities, installing Cassandra, 36

F
-f (foreground) flag, starting Cassandra with,

41, 267
Facebook, 17, 29
failure detection, 109-110
FailureDetector class, 110
FailureDetectorMBean, 251
fault tolerance, 19
feature-based sharding, 11
file-based driver configuration, 172
files, writing to disk, 191-193
file_cache_size_in_mb property, 323
Filter.db, SSTable component, 193
filtering data, 207, 311
float data type, 67
flush, 274
forums, Cassandra community, 32
freezing collections, 77
FROM clause, 149
full backups, 292
full compaction, 127
full repair, 277
full replicas, 204
functional segmentation, 11
functions, 133, 371-375

G
G1GC (Garbage-First garbage collector), 333
Gang of Four Strategy pattern, 115
garbage collection (see GC)
Garbage Collection Grace Seconds, 128
Garbage-First garbage collector (see G1GC)
GC (garbage collection), 253, 332
GCE (Google Compute Engine), 239
GCInspectorMXBean, 253
GCP (Google Cloud Platform), 26, 111, 239
gc_grace_seconds property, 128, 285
gc_warn_threshold_in_ms, 334

generation, SSTable, 192
geographical distribution of data, Cassandra

support for, 31
GoCQL Driver, 183
Google Bigtable, 17, 26
Google Cloud Launcher, 239
Google Cloud Platform (see GCP)
Google Cloud Spanner, 16
Google Cloud Stackdriver, 239
Google Compute Engine (see GCE)
Google Spanner, 26
Google VPC, 240
GoogleCloudSnitch, 222, 240
gossip protocol, 108, 133, 218, 221, 284
Gossiper class, 109
GossiperMBean, 251
GossipingPropertyFileSnitch, 221, 283
Grafana dashboards, 265
graph data models, 142
graph databases, 14, 24
Gray, Jim

“The Transaction Concept: Virtues and
Limitations”, 6

guaranteed delivery, hinted handoff and, 118

H
Hackolade, 103
Hadoop, 382
Hammerbacher, Jeff, 28
hash tree, 120
health check, 273
heap memory, 318, 332
Hector (client driver), 157
HELP command, 46
high availability, 19
high performance, 28
hinted handoff

in Cassandra architecture, 118
MBean, 249
performance tuning, 324
repairing failed nodes, 285
system.hints table removal, 134
timeouts, 330
for write path, 187

hinted_handoff_throttle_in_kb property, 324
hints, defined, 118
HintsService class, 119
HintsServiceMBean, 249
hints_directory property, 325

Index | 397

HOCON (Human-Optimized Config Object
Notation) format, 173

Hohpe, Gregor
“Starbucks Does Not Use Two-Phase Com‐

mit”, 9
horizontal scaling, 7, 15, 19
hotel application (example)

application design, 135-155
defining application queries, 86
defining database schema, 101-105
disk size calculation, 98-100
entity-relationship model, 82
logical data model, 89-93
partition size calculation, 97-98
physical data model, 94-96
RDBMS design for, 82
splitting partitions, 100

hotspots, 223
hybrid cloud, 31, 229

I
IAuthenticator interface, 339
idempotence warning, 72
identity data types, 68
IDEs (integrated development environments),

105, 166, 246
IEndpointSnitch interface, 111
IF EXISTS clause, 193
IF NOT EXISTS clause, 193, 195, 373
IFailureDetector interface, 110
IInternodeAuthenticator interface, 340
IllegalStateException, 165
IMS (Information Management System), 2
IN clause, 207
incremental backups, enabling, 294
incremental repair, 277
incremental_backups property, 295
Incubator, 29
Index.db, SSTable component, 193
indexes

caches, 320
compaction and, 126
MBean, 250
partition index, 203
rebuilding, 281
SASI, 147
search and, 382
secondary, 144-148, 363
SSTable, 203, 211, 323

summary, 323
inet data type, 70
infinite loops with two-phase commits, 8
INFO logging level, 266
Information Management System (see IMS)
initial_token property, 113, 224
initServer method, 129
INSERT command, 51, 61, 166, 193
INSERT JSON command, 142
Instaclustr, 302
installing Cassandra, 35-39
instrumentation, 243
int data type, 67
integrated development environments (see

IDEs)
integrations for Cassandra, 379-389

Apache Kafka, 9, 379-381
Apache Lucene, 382
Apache SOLR, 382
Apache Spark, 382-389
application design, 153-156
Elasticsearch, 382

intercloud, 229
internal MBeans, 252
IP addresses, 220
IPartitioner interface, 114
IPv4 or IPv6 internet addresses, 70
ISO 8601 date formats, 68
isolation of transactions, 6

J
Java, 158
Java Development Kit (see JDK)
Java drivers (see DataStax Java Driver)
Java JDK, 38, 334
Java Keystore (see JKS)
Java Management Extensions (see JMX)
Java Map, 248
Java Message Service (see JMS)
Java microservice, 152
Java New I/O (NIO), 321
Java Runtime Environment (see JRE)
Java Specification Request (see JSR)
Java Virtual Machine (see JVM)
java.util.logging, 266
Javadoc tool, 37, 159
JavaScript Object Notation (see JSON)
JavaScript, functions defined in, 371
JAVA_HOME environment variable, 40

398 | Index

JBOD (just a bunch of disks) deployment, 234
JConsole, 245
JDBC (Java Database Connectivity), 184
JDK (Java Development Kit), 38, 334
JIRA issues, 32
JMeter, 311
JMS (Java Message Service), 118
JMX (Java Management Extensions), 181,

243-246, 353-355
JMXConfigurableThreadPoolExecutorMBean,

252
JMXConfiguratorMBean, 257
JMXEnabledScheduledThreadPoolExecutor,

252
JMXEnabledThreadPoolExecutorMBean, 252
jmxremote.access file, 354
jmxremote.password file, 354
Jmxterm, 246
joins, 3, 83
JRE (Java Runtime Environment), 38, 354
JSON (JavaScript Object Notation), 141
JSR (Java Specification Request), 243
Just a Bunch of Disks (see JBOD)
JVM (Java Virtual Machine)

setting the environment, 36
settings, 41, 227, 331-336
stopping the server, 43

jvm.options file, 334

K
K8s (Kubernetes), 299-302
K8ssandra project, 302
Kashlev Data Modeler, 104
Keppman, Martin

Designing Data-Intensive Applications
(O’Reilly), 9

Kerberos authenticator, 339
key cache, 125, 317
key-based sharding, 11
key-value models, 141
key-value pairs, 75
key-value stores, 14
keys attribute, 318
keyspaces

Cassandra’s data model, 59
cluster sizing, 233
CqlSession, 161
creating, 48
defined, 59

repairing, 276
replication strategies, 204, 230
services and, 153
snapshots, 293
statistics on, 257
system, 131-134
user-defined data types, 76
virtual tables, 259

keystore, 350-352
key_cache_size_in_mb, 318
KillrVideo, 156
Kubernetes (see K8s)

L
Lakshman, Avinash, 28
Lamport, Leslie, 121
$LANG environment variable, 68
LANGUAGE clause, 371
Language Integrated Query (see LINQ)
large deployments, using Cassandra for, 30
last write wins approach, 63
LCS (LeveledCompactionStrategy), 126, 325
lib directory, 37
Lightweight Directory Access Prototol (see

LDAP)
lightweight transaction (see LWT)
LIKE keyword, 147
LIMIT keyword, 208
linearizable consistency, 120
LINQ (Language Integrated Query), 183
Linux, 36, 335
list data type, 73-75
LIST USERS command, 341
load balancers, avoiding, 235
load balancing

application design considerations, 154
DataStax Java Driver policy for, 173
token-aware, 189

LoadBalancingPolicy interface, 173
local coordinator node, 189
locale, setting in cqlsh, 68
LOCAL_JMX setting, 353
LOCAL_ONE consistency level, 188, 200
LOCAL_QUORUM consistency level, 116, 188,

200, 284
LOCAL_SERIAL consistency level, 196
locking the database, disadvantage of, 3
Log4j, 228
Logback, 180, 228, 266

Index | 399

logback.xml file, 37, 267
logged batches, 196
logging

batchlog, 198, 330
commit logs, 122-124, 187, 190, 191, 226,

321
driver, 180
monitoring Cassandra, 266-270
security audit, 356

logical data modeling, 87-93
login, 339-342
LOGIN command, 341
logs directory, 40
lookup tables, use in sharding, 11
LSM-Tree databases, 127
LWT (lightweight transactions), 120, 193-196,

369
LZ4 compression, 177

M
macOS

extracting the download, 36
running ccm, 215

mailing lists, Cassandra community, 32
maintenance tasks, 273-302

adding nodes, 283
backup and recovery, 292-295
common tasks, 274-281
handling node failure, 284-290
health check, 273
SSTable utilities, 296
tools for, 297-302
upgrading Cassandra, 290-291

major compaction, 127
Malik, Prashant, 28
managed beans (see MBeans)
managed service, Cassandra as, 44
managers, 128
manifest.json file, 294
manual repair, 119
map data type, 75
mapper, object, 167-170
master database (SQL Server), 131
materialized views

application design, 148-151
restrictions included in, 364
server-side denormalization with, 84
storage engine and, 129
system keyspaces, 133

write path, 191
Maven, 38, 167
max_hints_file_size_in_mb property, 325
max_hint_window_in_ms property, 285, 325
MBeans, 246-253

cluster-related, 250
database, 247-250
internal, 252
security, 355

McCall, Nate, 30
MD5 cryptographic hash, 223
meetups, Cassandra community, 33
memory, 274, 277, 282, 318, 332

(see also caching)
Memtable class, 124
MemtablePool, 321
memtables

in Cassandra architecture, 122-124
flushing, 274, 321
LSM-Tree databases, 127
performance tuning, 320
reading data, 202

memtable_allocation_type property, 321
memtable_flush_period_in_ms, 321
memtable_flush_writers, 321
memtable_heap_space_in_mb, 321
memtable_offheap_space_in_mb, 321
Merkle trees, 120, 277
Merkle, Ralph, 120
MessagingService class, 130, 252
metadata, 131, 178, 278
metrics, 181, 253, 263-266, 322
microservice architecture, 135-156

bounded contexts, 138
characteristics, 135
deployment and integration, 153-156
extending designs, 143-151
Java microservice design example, 152
persistence, designing, 140-143
services, 138

Microsoft Azure, 240
Microsoft SQL Server, meta-databases, 131
migrating Cassandra, 361-378
MIN and MAX functions, 374
Mission Control, 245
monitoring Cassandra, 243-270

DataStax Java Driver, 180
with JMX, 243-246
logging, 266-270

400 | Index

MBeans, 246-253
metrics, 263-266
with nodetool, 253-259
performance tuning, 312
virtual tables, 259-263

multicloud, 31, 229
multimodel databases, 14
Murmur3Partitioner, 114, 223
MX4J (Management Extensions for Java), 245

N
native transport, 235, 331
Neo4j, 24
nesting collections, 77
Netflix Priam, 297
network and networking

cloud deployment setups, 238, 240
creating for cluster deployment, 235
network interfaces, 225
performance tuning, 329

Network Time Protocol (see NTP)
network-attached storage (see NAS)
NetworkTopologyStrategy class, 115, 154, 204,

221, 283
Newman, Sam

Building Microservices (O’Reilly), 135
NewSQL, 15
node-to-node encryption, 350-352
Node.js, 158, 182
NodeProbe class, 253
nodes

adding, 53-54, 217, 283
batchlog, 198
in Cassandra’s decentralized architecture, 18
configuring, 219-228
coordinator nodes, 117
data distribution, 111
deleting data and, 210
handling node failure, 284-290
metadata discovery, 178
reading data, 199-203
writing data, 187-191, 195

NodeStateListener interface, 178
nodetool assassinate command, 289
nodetool bootstrap command, 283
nodetool bootstrap resume command, 283
nodetool cleanup command, 275
nodetool clear snapshot command, 294
nodetool compact command, 328

nodetool compactionhistory command, 328
nodetool compactionstats command, 327
nodetool decommission command, 287
nodetool describecluster command, 255
nodetool disablebackup command, 294
nodetool drain command, 275, 290
nodetool enablebackup command, 294
nodetool flush command, 192, 274
nodetool getcompactionthreshold command,

327
nodetool getcompactionthroughput command,

328
nodetool info command, 256
nodetool join command, 327
nodetool listsnapshots command, 293
nodetool move command, 281
nodetool netstats command, 286
nodetool proxyhistograms command, 312
nodetool rebuild_index command, 281
nodetool refresh command, 295
nodetool reloadssl command, 353
nodetool removenode command, 289
nodetool repair command, 119, 276, 277, 285
nodetool ring command, 217, 248, 256, 279
nodetool setcompactionthreshold command,

327
nodetool setcompactionthroughput command,

328
nodetool sethintedhandoff throttlekb com‐

mand, 324
nodetool settraceprobability command, 315
nodetool snapshot command, 294
nodetool status command, 216, 248, 255, 273,

287
nodetool statusbackup command, 294
nodetool stop command, 328
nodetool tablehistograms command, 312
nodetool tablestats command, 258, 327
nodetool tpstats command, 257, 273
nodetool truncatehints command, 325
nodetool upgradesstables command, 291
nodetool, monitoring with, 253-259, 264
NoHostAvailableException, 160
NoSpeculativeExecutionPolicy, 176
NoSQL, 13-15, 338
NoSQLBench, 311
now() function, 69
NTP (Network Time Protocol), 235, 274
numeric data types, 67

Index | 401

num_tokens property, 113, 228

O
object databases, 14
object mappers, 167-170
object-relational mapping (ORM) frameworks

(see ORM)
objects, 9, 10, 332
ODBC (Open Database Connectivity), 184
OHCProvider class, 319
OldNetworkTopologyStrategy class, 115
ONE consistency level, 116, 188, 200
Open Database Connectivity (see ODBC)
OpenJDK, 40
operating systems, 35

(see also Windows systems)
extraction utilities, 36
JVM settings, 331
running ccm, 215
setting the environment, 41
storage file locations, 227
updating configuration files, 291
ZGC, 334

OPP (order-preserving partitioning), 223
OpsCenter, 298
Oracle Java Mission Control and Visual VM,

245
Oracle JDK, 40
orchestration, 155
ORDER BY clause, 86, 208
ordering data, 208
OrderPreservingPartitioner, 223
org.apache.cassandra.concurrent package, 252
org.apache.cassandra.db package, 129
org.apache.cassandra.dht package, 114
org.apache.cassandra.internal domain, 252
org.apache.cassandra.locator package, 111
org.apache.cassandra.service.paxos package,

121
org.apache.cassandra.transport package, 131
ORM (object-relational mapping) frameworks,

10
overstreaming, 279

P
PaaS (Platform-as-a-Service), 5
PAGING command, 209
paging, reading data, 208-210
parallel repair, 278

parallel ssh tool, 294
partition index, 203
partition keys, 57, 100, 102, 202, 206, 317
partition recovery, 26
partition summary, 203
partition tolerance, 23-27, 108
partitioner range repair, 279
partitioners, 113, 222-224
partitions

Cassandra’s data model, 27, 57
optimal storage design, 85
Paxos state, 121
performance tuning, 313
size calculation, 97-98
splitting, 100
system keyspaces, 133

Partner Interconnect, 240
PasswordAuthenticator, 339-342
passwords, 341
patterns and anti-patterns, data modeling, 91,

92
Paxos consensus algorithm, 121, 133
“Paxos Made Simple” (Lamport), 121
performance tuning, 305-336

caching, 317-320
commit logs, 321
compaction, 325-328
concurrency, 328
hinted handoff, 324
JVM settings, 331-336
managing performance, 305-317
memtables, 320
networking, 329
SSTables, 323
threading, 328
timeouts, 329

permissions, 343
persistence, designing with microservice archi‐

tecture, 140
Pfeil, Matt, 29
pgrep tool, 43
Phi Accrual Failure Detection, 110, 111
PHP, DataStax Ruby and, 184
physical data modeling, 93-96
pip (Python installer), 214
PKCS12, 348
PlainTextAuthProvider, 177
Platform-as-a-Service (see PaaS)
polyglot persistence, 15, 140

402 | Index

PreparedStatement, DataStax Java Driver,
163-165, 166

PreparedStatement.getId(), 164
Priam, 297
PRIMARY KEY clause, 149
primary keys

Cassandra’s data model, 57, 57, 59
collections as, 77
creating a table, 50
importance of, 88
inability to modify, 70
lightweight transactions, 193, 369
making unique, 90
relational data model, 55
secondary index consideration, 364

primary/secondary replication, 18
production clusters, 350
PropertyFileSnitch, 221, 286
protocols

anti-entropy, 119
Calvin transaction, 15
CQL Native Protocol, 131, 176, 262
finding version, 42, 47
gossip, 108, 133, 218, 221, 284
NTP, 235, 274
Paxos, 121
SNMP, 244

public key, 347
pylib directory, 37
Python, 181, 214, 385

Q
queries

building, 165-167
coordinator nodes and, 117
defining application queries, 86
full query logging, 270
logical data model for, 89-93
numbering for reference, 86
range queries, 205-208
reconnection policies, 175

query language shell (see CQL)
query-first design, 85
QueryBuilder class, 165-167, 211
queue anti-pattern in data modeling, 93
QUORUM consistency level, 116, 188, 200

R
rack-aware snitches, 221

RackInferringSnitch, 222
racks, 107, 221
RandomPartitioner, 114, 223
Ranganathan, Karthik, 28
Range class, 112
ranges

partitioner, 279
queries, 205-208
repairing, 279
searching over a range, 91
token, 111, 133, 279, 281

RBAC (role-based access control), 344-346
RDBMS (relational database management sys‐

tem)
differences from Cassandra, 55, 83-86
historical perspective, 2
review of, 5-12
scaling challenge for, 12-16

reactive style programming, 172
read repair, 119, 199
read-before-write semantics, 121
reading data, 199-210

Bloom filters, 124, 202
caching for, 125
Cassandra read path, 201-203
consistency levels, 116, 200
coordinator nodes and queries, 117
in cqlsh, 51-53
paging, 208-210
range queries, ordering and filtering,

205-208
read repair, 203-205

reconnection policies, 175
recovery, 292-295
refactoring data access, 368
referential integrity, Cassandra and, 84
relational database management system (see

RDBMS)
relational databases, 1-16

differences from Cassandra, 55, 83-86
review of, 5-13
shortcomings of, 1-5

“A Relational Model of Data for Large Shared
Data Banks” (Codd), 2

relationships, translating for migration, 365
remote coordinator node, 189
removing nodes, 287, 289
repairs

anti-entropy protocol, 119

Index | 403

common maintenance tasks, 276-281
failed nodes, 285
reading data, 203-205

replacing nodes, 286
replica placement strategy (see replication

strategies)
replica synchronization, 119
replicas, 114, 121, 199, 201, 204
replication, 18, 22-23, 204
replication factor

consistency levels and, 22, 116, 314, 346
creating keyspaces, 48
defined, 114

replication strategies
in Cassandra architecture, 115
cluster topology, 230, 375
LocalStrategy, 133
network authorization, 345
setting up, 48
transient, 204

ReplicationAwareTokenAllocator class, 113
request tracking, clients, 335
Reservation Service microservice example, 152
reservations (hotel example), 91, 96
Resilient Distributed Dataset (see RDD)
result sets, 162
ResultSet data type, 162
ResultSet.iterator() option, 163
RetryDecision, 175
RetryPolicy interface, 175
rings, 111-113, 218

(see also clusters)
role-based access control (see RBAC)
rolling upgrade, 290
RoundRobinPolicy, 174
row cache, 125, 318
row-oriented databases, 27
rows

Cassandra’s data model, 27, 56-59, 59-63
partition size calculation, 97-98
TTL rules, 66

rows_per_partition, 318
row_cache_class_name property, 319
Ruby, DataStax Ruby driver, 184
running Cassandra, 39-43

S
S3 (Simple Storage Service), 14
SASI (SSTable Attached Secondary Index), 147

saved_caches property, 320
Scala, 386
scalability

challenge for RDBMS design, 3, 12-16
elastic, 19, 28
microservice architecture, 136

Scalar DB, 156
SchemaBuilder, 179
SchemaChangeListener, 179
schemas

Cassandra’s data model and, 27
cluster information and, 255
defining database, 101-105
lightweight transactions, 195
Metadata class, DataStax Java Driver, 179
migration of, 376
relational database systems and, 9
restoring after snapshots and backups, 295
system virtual schema, 260

secondary indexes, application design, 144-148,
281

Secure Socket Layer (see SSL)
security, 337-359

audit logging, 356
authentication and authorization, 339-344
DataStax Java Driver, 177
encryption, 346-353
JMX security, 353-355
MBeans, 253

Security MBeans, 355
seed nodes, 219, 220, 282, 283, 287
SeedProvider interface, 220
SELECT command, 51

options for, 205-208
QueryBuilder, 166
reading data, 60
time to live (TTL), 65
timestamps, 63

SELECT COUNT command, 52
SELECT JSON command, 142
Select statement, QueryBuilder, 166
sequential consistency, 21
sequential repair, 278
SERIAL consistency level, 196
SerializingCacheProvider, 319
server version, determining in cqlsh, 47
server-side denormalization, 84
servers, starting and stopping Cassandra, 43
server_encryption_options, 350

404 | Index

services
ActiveRepairService, 277
AWS, 14, 236-239
CRUD services, 155
EmbeddedCassandraService, 129
keyspaces and, 153
messaging, 130, 252
microservice architecture, 135-156
S3, 14
storage, 121, 129, 287

session key, 347
sessions, 160-161
set data type, 72
SGC (Shenandoah Garbage Collector), 334
sharding, 10-12
shared storage, 153, 235
shared-nothing architecture, 10-12
Shenandoah Garbage Collector (see SGC)
SHOW VERSION command, 47
Simple Logging Facade for Java (see SLF4J)
Simple Network Monitoring Protocol (see

SNMP)
Simple Storage Service (see S3)
SimpleSeedProvider class, 220
SimpleSnitch class, 111, 220
SimpleStatement, DataStax Java Driver, 163,

163
SimpleStatement.newInstance() method, 162
SimpleStrategy class, 115, 230
single point of failure, avoiding, 18
sizeOf() function, 99
SizeTieredCompactionStrategy (see STCS)
Slack chat, Cassandra community, 32
SLF4J (Simple Logging Facade for Java), 180,

266
slices, 206
smallint data type, 67
snake case, 49
SNAPPY compression, 177
snapshots, 250, 293-295
snapshot_before_compaction property, 294
snitches

adding a data center, 283
in Cassandra architecture, 110
configuring, 220-222
creating a cluster, 214
MBean, 251
networking, 238, 240
repair role of, 278

SNMP (Simple Network Monitoring Protocol),
244

soft deletes, 128
Sorted String Table (see SSTables)
sorting data, 207

designing ahead, 88
in RDBMS vs. Cassandra, 85

Spark, 378, 382-389
Spark DataFrame, 389
Spark RDD (Resilient Distributed Dataset), 383
SpeculativeExecutionPolicy, 176
SQL (Structured Query Language)

compared to CQL, 28, 55
meta-database maintenance, 131
support for and adoption of, 5

SSL (Secure Sockets Layer), 347
SSL certificates, 350
SSLContext object, 351
SSLFactory class, 351
SSTable Attached Secondary Index (see SASI)
sstableloader, 295
sstablemetadata tool, 278
SSTables

in Cassandra architecture, 123
compaction of, 125
datafile and, 227
deleting data, 211
flush and restore for backup, 295
MBean information, 249
partition size and, 99
performance tuning, 323
reading data, 202
repairs, 278
streaming, 130
upgrading, 291
utilities, 296
writing files to disk, 191-193

sstableupgrade script, 291
SSTableWriter interface, 192
“Starbucks Does Not Use Two-Phase Commit”

(Hohpe), 9
starting the server, 41-43
startup scripts, 227
state function, 372
stateful sets, 301
statements, DataStax Java Driver, 161-165
static columns, 58, 97
statistics, nodetool monitoring, 257
Statistics.db, SSTable component, 193

Index | 405

STCS (SizeTieredCompactionStrategy), 126,
233, 325, 328

Stonebreaker, Michael
“The Case for Shared Nothing”, 12

stop-server command, 43
stopping Cassandra, 43
storage

Amazon EC2, 238
append-only storage model, 127
cluster deployment, 235
commit log as, 321
data directory, 40
designing for optimal, 85
Kafka, 380
Kubernetes, 301
node configuration, 226
shared vs. dedicated, 153, 235

storage engine, 129
StorageProxy class, 130, 131
StorageProxyMBean, 248
StorageService class, 121, 129, 287
StorageServiceMBean, 248, 252
stored procedures, migrating, 370-375
stream processing system, 9
streaming, 130, 279
StreamManager class, 130
StreamManagerMBean, 252
stress testing, performance tuning, 308-311
stress-build target, 39
strict consistency, 21
strings

creating a table, 50
enumerated types and, 67

strong consistency, 116, 156, 200
subrange repair, 279
sum function, 374
Summary.db, SSTable component, 193
superuser, 343
survivor space, 332
suspicion level, 109, 110
system keyspaces, 47, 131-134, 233, 313
system.log file, 218, 267

T
tables, 57

(see also SSTables)
Bigtable, 17, 26
Cassandra’s data model, 57-63
creating in keyspace, 49

defined, 57, 59
freezing, 77
lookup tables, use in sharding, 11
memtables, 122-124, 127, 202, 274, 320
nesting, 77
system.hints table removal, 134
virtual tables for monitoring, 259-263

Tablesnap, 292
tempdb (SQL Server), 131
test (build target), 39
text data type, 68, 94
textAsBlob() function, 70
textual data types, 67
thread pools, 252, 257, 329
threading

MBeans, 252
performance tuning, 328

THREE consistency level, 116, 188, 200
throttling, 324, 330, 336
time data type, 68
time series pattern, data modeling, 92
time to live (see TTL)
timeouts, performance tuning, 329
timestamp data type, 68
timestamps, 63, 99
timeuuid data type, 69, 75
TimeWindowCompactionStrategy (see TWCS)
tinyint data type, 67
TLS (Transport Layer Security), 347
TOC.txt, SSTable component, 193
token ranges, 111, 133, 224, 279
token() function, 112
token-generator tool, 223
TokenAwarePolicy, 174
tokens, 111-113

adding nodes, 282
moving, 281
node configuration, 224
transient replication and, 204

tombstones, 128, 210
tools directory, 37
tracing, 314, 335
training and conferences, 33
“The Transaction Concept: Virtues and Limita‐

tions” (Gray), 6
transactions

lightweight, 120, 193-196
RDBMS and SQL support for, 6-9
system keyspaces, 133

406 | Index

transient replication, 204
Transport Layer Security (see TLS)
transport server, 131
triggers, system keyspaces, 133
TRUNCATE command, 53
truststore, 349, 352
TTL (time to live), 65-66, 212
TTL() function, 65
tuneable consistency, 20-23, 115
tuples, 75
TWCS (TimeWindowCompactionStrategy),

126, 212, 326
TWO consistency level, 116, 188, 200
two-phase commit (see 2PC)

U
UDAs (user-defined aggregates), 133, 372
UDFs (user-defined functions), 371-372
UDTs (user-defined data types), 76-79, 96, 167
universally unique identifiers (see UUIDs)
Unix-based operating systems (Linux, macOS),

41, 291, 331
unixTimestampOf() function, 69
unlogged batches, 196
UnreachableNodes attribute, 248
UPDATE command, 62, 64, 194
upgrading Cassandra, 290-291
upsert, 62
users, 340
USING TIMESTAMP option, 64
USING TTL option, 65
UTF-8 text standard, 68
uuid data type, 69, 95, 96
uuid() function, 69
UUIDs (universally unique identifiers), 69

V
validating data migration, 378
validation compaction, 120, 277
values (or cells), number in a partition, 97
varchar data type, 68
varint data type, 67
versions

adding nodes, 282
adding users, 340
clearing out data directories when installing,

43
commit logs, 191

finding those in use, 47
Java 8 JVM, 40
schemas, 192, 255
SSL storage port, 351
updating configuration files, 291

vertical scaling, 3, 19
virtual machine images, Cassandra distribu‐

tions, 44
virtual nodes (vnodes), 113, 224
virtual tables, monitoring Cassandra, 259-263
Visual VM, 245
Vogels, Werner, 22
VPC (Virtual Private Cloud), 238

W
WARN logging level, 266, 334
weak (eventual) consistency, 21-23
web scale data solutions, 12-16
WHERE clause, 149, 166, 206, 207
wide partition (row) pattern, data modeling, 91
wide-column store, 14, 57
Windows systems

extraction utility, 36
JMX connection, 245
JVM settings, 331
setting the environment, 40
stopping Cassandra on, 43
storage file locations, 227

wrapping range, 111
write survey mode, 326
writetime() function, 63
writing data, 187-199

in batches, 196-199
Cassandra write path, 189-191
Cassandra’s advantage in, 30, 124
consistency levels, 116, 187-188
coordinator nodes and queries, 117
in cqlsh, 51-53
lightweight transactions, 193-196

X
XML databases, 14

Z
zero-copy streaming, 131
zero-downtime migration, 376
ZGC (Z Garbage Collector), 334

Index | 407

About the Authors
Eben Hewitt is chief technology officer for Choice Hotels International, one of the
largest hotel companies in the world. He is the author of several books on architec‐
ture, distributed systems, and programming. He has consulted for venture capital
firms, and is a frequently invited speaker on technology and strategy.

Jeff Carpenter works in developer relations at DataStax. He was previously a systems
architect for Choice Hotels International, and has 20 years of experience in the hospi‐
tality and defense industries. Jeff ’s interests include SOA/microservices, architecting
large-scale systems, and data architecture. He has worked on projects ranging from
complex battle planning systems to a cloud-based hotel reservation system. Jeff is
passionate about disruptive projects that change industries, mentoring architects and
developers, and the next challenge.

Colophon
The bird on the cover of Cassandra: The Definitive Guide is an Indian paradise fly‐
catcher (Terpsiphone paradisi). One of three species of the family of paradise flycatch‐
ers, the Indian paradise flycatcher is found in India, central Asia, and Myanmar.
paradise flycatchers are passerine (perching) insectivores.

Paradise flycatchers are sexually dimorphic, meaning that males and females look dif‐
ferent. Females tend to be less brilliantly colored than their male counterparts, which
have long tail feathers. For example, the male Indian paradise flycatcher’s tail stream‐
ers can be approximately 15 inches long. Female flycatchers are believed to select
their mate based on tail length. Paradise flycatchers are monogamous, which makes
their distinctive coloring and plumage unusual, as this form of sexual display is usu‐
ally reserved for nonmonogamous species.

Because they’re so widely distributed, paradise flycatchers can be found in a variety of
habitats, including savannas, forests, and even cultivated gardens. They are insecti‐
vores and catch their food on the wing, thanks in part to their quick reflexes and
sharp eyesight.

The color illustration on the cover is by Karen Montgomery, based on a black and
white engraving from Cassell’s Natural History, Vol. IV. The cover fonts are Gilroy
Semibold and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Cover
	DataStax
	Copyright
	Table of Contents
	Foreword
	Preface
	Why Apache Cassandra?
	Is This Book for You?
	What’s in This Book?
	New for the Third Edition
	Note on the Revised Third Edition

	Conventions Used in This Book
	Using Code Examples
	O’Reilly Interactive Katacoda Scenarios
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Beyond Relational Databases
	What’s Wrong with Relational Databases?
	A Quick Review of Relational Databases
	Transactions, ACID-ity, and Two-Phase Commit
	Schema
	Sharding and Shared-Nothing Architecture

	Web Scale
	The Rise of NoSQL
	Summary

	Chapter 2. Introducing Cassandra
	The Cassandra Elevator Pitch
	Cassandra in 50 Words or Less
	Distributed and Decentralized
	Elastic Scalability
	High Availability and Fault Tolerance
	Tuneable Consistency
	Brewer’s CAP Theorem
	Row-Oriented
	High Performance

	Where Did Cassandra Come From?
	Is Cassandra a Good Fit for My Project?
	Large Deployments
	Lots of Writes, Statistics, and Analysis
	Geographical Distribution
	Hybrid Cloud and Multicloud Deployment

	Getting Involved
	Summary

	Chapter 3. Installing Cassandra
	Installing the Apache Distribution
	Extracting the Download
	What’s in There?

	Building from Source
	Additional Build Targets

	Running Cassandra
	Setting the Environment
	Starting the Server
	Stopping Cassandra

	Other Cassandra Distributions
	Running the CQL Shell
	Basic cqlsh Commands
	cqlsh Help
	Describing the Environment in cqlsh
	Creating a Keyspace and Table in cqlsh
	Writing and Reading Data in cqlsh

	Running Cassandra in Docker
	Summary

	Chapter 4. The Cassandra Query Language
	The Relational Data Model
	Cassandra’s Data Model
	Clusters
	Keyspaces
	Tables
	Columns

	CQL Types
	Numeric Data Types
	Textual Data Types
	Time and Identity Data Types
	Other Simple Data Types
	Collections
	Tuples
	User-Defined Types

	Summary

	Chapter 5. Data Modeling
	Conceptual Data Modeling
	RDBMS Design
	Design Differences Between RDBMS and Cassandra

	Defining Application Queries
	Logical Data Modeling
	Hotel Logical Data Model
	Reservation Logical Data Model

	Physical Data Modeling
	Hotel Physical Data Model
	Reservation Physical Data Model

	Evaluating and Refining
	Calculating Partition Size
	Calculating Size on Disk
	Breaking Up Large Partitions

	Defining Database Schema
	Cassandra Data Modeling Tools

	Summary

	Chapter 6. The Cassandra Architecture
	Data Centers and Racks
	Gossip and Failure Detection
	Snitches
	Rings and Tokens
	Virtual Nodes
	Partitioners
	Replication Strategies
	Consistency Levels
	Queries and Coordinator Nodes
	Hinted Handoff
	Anti-Entropy, Repair, and Merkle Trees
	Lightweight Transactions and Paxos
	Memtables, SSTables, and Commit Logs
	Bloom Filters
	Caching
	Compaction
	Deletion and Tombstones
	Managers and Services
	Cassandra Daemon
	Storage Engine
	Storage Service
	Storage Proxy
	Messaging Service
	Stream Manager
	CQL Native Transport Server

	System Keyspaces
	Summary

	Chapter 7. Designing Applications with Cassandra
	Hotel Application Design
	Cassandra and Microservice Architecture
	Microservice Architecture for a Hotel Application
	Identifying Bounded Contexts
	Identifying Services
	Designing Microservice Persistence

	Extending Designs
	Secondary Indexes
	Materialized Views

	Reservation Service: A Sample Microservice
	Design Choices for a Java Microservice

	Deployment and Integration Considerations
	Services, Keyspaces, and Clusters
	Data Centers and Load Balancing
	Interactions Between Microservices

	Summary

	Chapter 8. Application Development with Drivers
	DataStax Java Driver
	Development Environment Configuration
	Connecting to a Cluster
	Statements
	Simple Statements
	Prepared Statements
	Query Builder
	Object Mapper
	Asynchronous Execution
	Driver Configuration
	Metadata
	Debugging and Monitoring

	DataStax Python Driver
	DataStax Node.js Driver
	DataStax C# Driver
	Other Cassandra Drivers
	Summary

	Chapter 9. Writing and Reading Data
	Writing
	Write Consistency Levels
	The Cassandra Write Path
	Writing Files to Disk
	Lightweight Transactions
	Batches

	Reading
	Read Consistency Levels
	The Cassandra Read Path
	Read Repair
	Range Queries, Ordering and Filtering
	Paging

	Deleting
	Summary

	Chapter 10. Configuring and Deploying Cassandra
	Cassandra Cluster Manager
	Creating a Cluster
	Adding Nodes to a Cluster
	Dynamic Ring Participation

	Node Configuration
	Seed Nodes
	Snitches
	Partitioners
	Tokens and Virtual Nodes
	Network Interfaces
	Data Storage
	Startup and JVM Settings

	Planning a Cluster Deployment
	Cluster Topology and Replication Strategies
	Sizing Your Cluster
	Selecting Instances
	Storage
	Network

	Cloud Deployment
	Amazon Web Services
	Google Cloud Platform
	Microsoft Azure

	Summary

	Chapter 11. Monitoring
	Monitoring Cassandra with JMX
	Cassandra’s MBeans
	Database MBeans
	Cluster-Related MBeans
	Internal MBeans

	Monitoring with nodetool
	Getting Cluster Information
	Getting Statistics

	Virtual Tables
	System Virtual Schema
	System Views

	Metrics
	Logging
	Examining Log Files
	Full Query Logging

	Summary

	Chapter 12. Maintenance
	Health Check
	Common Maintenance Tasks
	Flush
	Cleanup
	Repair
	Rebuilding Indexes
	Moving Tokens

	Adding Nodes
	Adding Nodes to an Existing Data Center
	Adding a Data Center to a Cluster

	Handling Node Failure
	Repairing Failed Nodes
	Replacing Nodes
	Removing Nodes

	Upgrading Cassandra
	Backup and Recovery
	Taking a Snapshot
	Clearing a Snapshot
	Enabling Incremental Backup
	Restoring from Snapshot

	SSTable Utilities
	Maintenance Tools
	Netflix Priam
	DataStax OpsCenter
	Cassandra Sidecars
	Cassandra Kubernetes Operators

	Summary

	Chapter 13. Performance Tuning
	Managing Performance
	Setting Performance Goals
	Benchmarking and Stress Testing
	Monitoring Performance
	Analyzing Performance Issues
	Tracing
	Tuning Methodology

	Caching
	Key Cache
	Row Cache
	Chunk Cache
	Counter Cache
	Saved Cache Settings

	Memtables
	Commit Logs
	SSTables
	Hinted Handoff
	Compaction
	Concurrency and Threading
	Networking and Timeouts
	JVM Settings
	Memory
	Garbage Collection

	Summary

	Chapter 14. Security
	Authentication and Authorization
	Password Authenticator
	Using CassandraAuthorizer
	Role-Based Access Control

	Encryption
	SSL, TLS, and Certificates
	Node-to-Node Encryption
	Client-to-Node Encryption

	JMX Security
	Securing JMX Access
	Security MBeans

	Audit Logging
	Summary

	Chapter 15. Migrating and Integrating
	Knowing When to Migrate
	Adapting the Data Model
	Translating Entities
	Translating Relationships

	Adapting the Application
	Refactoring Data Access
	Maintaining Consistency
	Migrating Stored Procedures

	Planning the Deployment
	Migrating Data
	Zero-Downtime Migration
	Bulk Loading

	Common Integrations
	Managing Data Flow with Apache Kafka
	Searching with Apache Lucene, SOLR, and Elasticsearch
	Analyzing Data with Apache Spark

	Summary

	Index
	About the Authors
	Colophon
	Blank Page

